Browsing by Subject "Microscopy, Electron, Scanning"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes(2013) Kayaci F.; Umu O.C.O.; Tekinay, T.; Uyar, T.Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by 1H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property. © 2013 American Chemical Society.Item Open Access Chitosan scaffolds with BMP-6 loaded alginate microspheres for periodontal tissue engineering(2012) Soran, Z.; Aydin, R.S.T.; Gumusderelioglu, M.The aim of this study is to develop an effective growth factor releasing scaffold-microsphere system for promoting periodontal tissue engineering. Bone morphogenetic protein-6 (BMP-6)-loaded alginate microspheres in narrow size distribution were produced by optimising electrospraying conditions. The addition of these microspheres to chitosan gels produced a novel scaffold in which not only the pore sizes and interconnectivity were preserved, but also a controlled release vehicle was generated. Loading capacity was adjusted as 50ng or 100ng BMP-6 for each scaffold and the controlled release behaviour of BMP-6 from chitosan scaffolds was observed during seven days. Cell culture studies were carried out with rat mesenchymal stem cells derived from bone marrow in three groups; chitosan scaffolds, chitosan scaffolds containing BMP-6-loaded alginate microspheres and chitosan scaffolds with free BMP-6 in culture medium. Results showed that controlled delivery of BMP-6 from alginate microspheres has a significant effect on osteogenic differentiation. © 2012 Informa UK Ltd All rights reserved.Item Open Access Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes(Institute of Physics Publishing, 2009) Uyar, Tamer; Nur, Y.; Hacaloglu, J.; Besenbacher, F.Electrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: α-CD, β-CD, and γ-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 °C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order α-CD<β-CD<γ-CD, the thermal evolution of menthol shifted to higher temperatures, suggesting that the strength of interaction between menthol and the CD cavity is in the order γ-CD>β-CD>α-CD. © 2009 IOP Publishing Ltd.Item Open Access Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: release behavior and antioxidant activity of gallic acid(Elsevier, 2016-06) Aytac Z.; Kusku S. I.; Durgun, Engin; Uyar, TamerCyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and 1H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers.Item Open Access Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning(American Chemical Society, 2016) Aytac Z.; Yildiz, Z. I.; Kayaci-Senirmak, F.; S. Keskin, N. O.; Kusku, S. I.; Durgun, Engin; Tekinay, T.; Uyar, TamerWe have proposed a new strategy for preparing free-standing nanofibrous webs from an inclusion complex (IC) of a well-known flavor/fragrance compound (limonene) with three modified cyclodextrins (HPβCD, MβCD, and HPγCD) via electrospinning (CD/limonene-IC-NFs) without using a polymeric matrix. The experimental and computational modeling studies proved that the stoichiometry of the complexes was 1:1 for CD/limonene systems. MβCD/limonene-IC-NF released much more limonene at 37, 50, and 75 °C than HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF because of the greater amount of preserved limonene. Moreover, MβCD/limonene-IC-NF has released only 25% (w/w) of its limonene, whereas HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF released 51 and 88% (w/w) of their limonene in 100 days, respectively. CD/limonene-IC-NFs exhibited high antibacterial activity against E. coli and S. aureus. The water solubility of limonene increased significantly and CD/limonene-IC-NFs were dissolved in water in a few seconds. In brief, CD/limonene-IC-NFs with fast-dissolving character enhanced the thermal stability and prolonged the shelf life along with antibacterial properties could be quite applicable in food and oral care applications.Item Open Access The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning(2009) Uyar, Tamer; Havelund, R.; Hacaloglu J.; Zhou X.; Besenbacher F.; Kingshott P.Polystyrene (PS) nanofibers containing the inclusion complex forming beta-cyclodextrin (β-CD) were successfully produced by electrospinning aimed at developing functional fibrous nanowebs. By optimization of the electrospinning parameters, which included varying the relative concentration of PS and β-CD in the solutions, bead-free fibers were produced. Homogeneous solutions of β-CD and PS in dimethylformamide (DMF) were used with concentrations of PS varying from 10% to 25% (w/v, with respect to DMF), and β-CD concentrations of 1% to 50% (w/w, with respect to PS). The presence of β-CD facilitated the production of bead-free PS fibers even from lower polymer concentrations as a result of the higher conductivity of the PS/CD solutions. The morphology and the production of bead-free PS/CD fibers were highly dependent on the β-CD contents. Transmission electron microscope (TEM) and atomic force microscope (AFM) images showed that incorporation of β-CD yielded PS fibers with rougher surfaces. Thermogravimetric analysis (TGA) and direct insertion probe pyrolysis mass spectroscopy (DP-MS) results confirmed the presence of β-CD in the PS fibers. X-ray diffraction (XRD) spectra of the fibers indicated that the β-CD molecules are distributed within the PS matrix without any phase separated crystalline aggregates up to 40% (w/w) β-CD loading. Furthermore, chemical analyses by Fourier transform infrared (FTIR) spectroscopy studies confirm that β-CD molecules are located within the PS fiber matrix. Finally, preliminary investigations using x-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-static-SIMS) show the presence of the cyclodextrin molecules in the outer molecular layers of the fiber surfaces. The XPS and ToF-SIMS findings indicate that cyclodextrin functionalized PS webs would have the potential to be used as molecular filters and/or nanofilters for the purposes of filtration/purification/separation owing to surface associated β-CD molecules which have inclusion complexation capability. © 2009 IOP Publishing Ltd.Item Open Access One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers(Pergamon Press, 2014) Celebioglu A.; Aytac Z.; Umu, O. C. O.; Dana, A.; Tekinay, T.; Uyar, TamerOne-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.Item Open Access Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility(Elsevier, 2016-04) Aytac Z.; Kusku, S. I.; Durgun, Engin; Uyar, TamerElectrospinning of polyacrylic acid (PAA) nanofibres (NF) incorporating β-cyclodextrin inclusion complex (β-CD-IC) of quercetin (QU) was performed. Here, β-CD was used as not only the crosslinking agent for PAA nanofibres but also as a host molecule for inclusion of QU. The phase solubility test showed enhanced solubility of QU due to the inclusion complexation; in addition, the stoichiometry of QU/β-CD-IC was determined to be 1:1. Computational modelling studies confirmed that 1:1 and 1:2 complex formation are desirable; 1:1 complex formation was chosen to have higher weight loading of QU. SEM images showed that PAA/QU/β-CD-IC-NF were bead-free and uniform. XRD indicated that PAA/QU/β-CD-IC-NF were amorphous in nature without the crystalline peaks of QU. Comparative results revealed that the release profile of QU from PAA/QU/β-CD-IC-NF was much slower but greater in total than from PAA/QU/β-CD-IC-film. Moreover, high antioxidant activity and photostability of QU was achieved in PAA/QU/β-CD-IC-NF.Item Open Access A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron(2007) Çelebi O.; Üzüm, C.; Shahwan, T.; Erten H.N.Recently, iron nanoparticles are increasingly being tested as adsorbents for various types of organic and inorganic pollutants. In this study, nanoparticles of zero-valent iron (NZVI) synthesized under atmospheric conditions were employed for the removal of Ba2+ ions in a concentration range 10-3 to 10-6 M. Throughout the study, 133Ba was used as a tracer to study the effects of time, concentration, and temperature. The obtained data was analyzed using various kinetic models and adsorption isotherms. Pseudo-second-order kinetics and Dubinin-Radushkevich isotherm model provided the best correlation with the obtained data. Observed thermodynamic parameters showed that the process is exothermic and hence enthalpy-driven. © 2007 Elsevier B.V. All rights reserved.Item Open Access Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures(2011) Acar H.; Garifullin, R.; Güler, Mustafa O.Mineralized biological materials such as shells, skeleton, and teeth experience biomineralization. Biomimetic materials exploit the biomineralization process to form functional organic-inorganic hybrid nanostructures. In this work, we mimicked the biomineralization process by the de novo design of an amyloid-like peptide that self-assembles into nanofibers. Chemically active groups enhancing the affinity for metal ions were used to accumulate silicon and titanium precursors on the organic template. The self-assembly process and template effect were characterized by CD, FT-IR, UV-vis, fluorescence, rheology, TGA, SEM, and TEM. The self-assembled organic nanostructures were exploited as a template to form high-aspect-ratio 1-D silica and titania nanostructures by the addition of appropriate precursors. Herein, a new bottom-up approach was demonstrated to form silica and titania nanostructures that can yield wide opportunities to produce high-aspect-ratio inorganic nanostructures with high surface areas. The materials developed in this work have vast potential in the fields of catalysis and electronic materials. © 2011 American Chemical Society.Item Open Access Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers(Optical Society of American (OSA), 2011) Erdoǧan, M.; Öktem, B.; Kalaycioǧlu H.; Yavaş, S.; Mukhopadhyay P.K.; Eken, K.; Özgören, K.; Aykaç, Y.; Tazebay, U.H.; Ilday F.O.We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns. © 2011 Optical Society of America.