Browsing by Subject "Mice"
Now showing 1 - 20 of 24
- Results Per Page
- Sort Options
Item Open Access Cd81 Interacts with the T Cell Receptor to Suppress Signaling(2012) Cevik, S.I.; Keskin, N.; Belkaya, S.; Ozlu, M.I.; Deniz, E.; Tazebay, U.H.; Erman, B.CD81 (TAPA-1) is a ubiquitously expressed tetraspanin protein identified as a component of the B lymphocyte receptor (BCR) and as a receptor for the Hepatitis C Virus. In an effort to identify trans-membrane proteins that interact with the T-cell antigen receptor (TCR), we performed a membrane yeast two hybrid screen and identified CD81 as an interactor of the CD3delta subunit of the TCR. We found that in the absence of CD81, in thymocytes from knockout mice, TCR engagement resulted in stronger signals. These results were recapitulated in T cell lines that express low levels of CD81 through shRNA mediated silencing. Increased signaling did not result from alterations in the levels of TCR on the surface of T lymphocytes. Although CD81 is not essential for normal T lymphocyte development, it plays an important role in regulating TCR and possibly pre-TCR signal transduction by controlling the strength of signaling. CD81 dependent alterations in thymocyte signaling are evident in increased CD5 expression on CD81 deficient double positive (DP) thymocytes. We conclude that CD81 interacts with the T cell receptor to suppress signaling. © 2012 Cevik et al.Item Open Access Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication(Proceedings of the National Academy of Sciences, 2014-12-02) Montague, M. J.; Li, G.; Gandolfi, B.; Khan, R.; Aken, B. L.; Marques Bonet, T.; Alkan C.; Thomas, G. W. C.; Warren, W. C.; Searle, S. M. J.; Minx, M.; Hilliera, LaDeana W.; Koboldt, D. C.; Davis, B. W.; Driscoll, C. A.; Barr, C. S.; Blackistone, K.; Quilez, J.; Lorente-Galdos, B.; Marques Bonet, T.; Hahnj, M. W.; Menotti-Raymond, M.; O’Brien, S. J.; Wilson, R. K.; Lyons, L. A.; Murphy, W. J.Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.Item Open Access Effects of aging on gene expression levels of inflammatory, cytoskeletal and microglial markers in the brain using the zebrafish (Danio Rerio) model organism(2021-01) Aydoğan, Hande ÖzgeAge-related cognitive decline burdens the elderly population, limiting their abil-ity to socialize and be independent. To be able to develop proper treatments, healthy aging should be examined. Previous studies focusing on healthy brain aging revealed that abnormal microglial activation was observed. Aging microglia exhibits 0partial loss of motility due to cytoskeletal changes, leading to decreases in their ability to respond to environmental cues. Thus, a more inflammatory phe-notype was observed in microglia. These disruptions of the previously established homeostasis in the brain could be the underlying reason for cognitive decline ex-perienced during aging. To understand these changes during aging in the brain, cytoskeletal, microglial, and inflammation-related markers were investigated by using both in silico and in vivo approaches. In silico analyses were performed on mice hippocampus and the whole brain revealed that the genes involved in the actin cytoskeleton reorganization (Arpc1b), neurogenesis (Erbb4), and proinflam-matory related pathways (Il1b, P2x7r, Elf2b) showed differential gene expression levels among different age groups, genders, and tissue of origin. On the other hand, no differential expression was observed in microglial (Coro1a and Aif1) and anti-inflammatory markers (Tgfb1 and Il10). To further validate these re-sults in vivo, quantitative polymerase chain reaction (qPCR) was performed on young and old zebrafish brains. According to the results, only two genes showed marginally significant differences among young and old brains: arpc1b and p2x7r. These results collectively could mean 1) the overall microglia population does not change during aging, 2) the brain does not exhibit imbalances in terms of pro-and anti-inflammatory cytokines, and 3) neurogenesis. Furthermore, the signifi-cant changes observed in arpc1b and p2x7r indicated the iii iv importance of the cytoskeleton and inflammation-related pathways in the correct functioning of the cells. Therefore, this study showed that in silico analysis are the reliable indica-tors of in vivo experiments, zebrafish can be used as a gerontological model, and the importance of cytoskeleton in motile cells. However, to understand these de-scribed relations, further investigation on the protein level of these genes should be done.Item Open Access Enhanced immunostimulatory activity of cyclic dinucleotides on mouse cells when complexed with a cell-penetrating peptide or combined with CpG(Wiley - V C H Verlag GmbH & Co. KGaA, 2015) Yildiz, S.; Alpdundar, E.; Gungor, B.; Kahraman, T.; Bayyurt, B.; Gursel, I.; Gursel, M.Recognition of pathogen-derived nucleic acids by immune cells is critical for the activation of protective innate immune responses. Bacterial cyclic dinucleotides (CDNs) are small nucleic acids that are directly recognized by the cytosolic DNA sensor STING (stimulator of IFN genes), initiating a response characterized by proinflammatory cytokine and type I IFN production. Strategies to improve the immune stimulatory activities of CDNs can further their potential for clinical development. Here, we demonstrate that a simple complex of cylic-di-GMP with a cell-penetrating peptide enhances both cellular delivery and biological activity of the cyclic-di-GMP in murine splenocytes. Furthermore, our findings establish that activation of the TLR-dependent and TLR-independent DNA recognition pathways through combined use of CpG oligonucleotide (ODN) and CDN results in synergistic activity, augmenting cytokine production (IFN-α/β, IL-6, TNF-α, IP-10), costimulatory molecule upregulation (MHC class II, CD86), and antigen-specific humoral and cellular immunity. Results presented herein indicate that 3′3′-cGAMP, a recently identified bacterial CDN, is a superior stimulator of IFN genes ligand than cyclic-di-GMP in human PBMCs. Collectively, these findings suggest that the immune-stimulatory properties of CDNs can be augmented through peptide complexation or synergistic use with CpG oligonucleotide and may be of interest for the development of CDN-based immunotherapeutic agents.Item Open Access Enhancer cooperativity as a novel mechanism underlying the transcriptional regulation of E-cadherin during mesenchymal to epithelial transition(Elsevier, 2015) Alotaibi, H.; Basilicata, M. F.; Shehwana, H.; Kosowan, T.; Schreck, I.; Braeutigam, C.; Konu, O.; Brabletz, T.; Stemmler, M. P.Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) highlight crucial steps during embryogenesis and tumorigenesis. Induction of dramatic changes in gene expression and cell features is reflected by modulation of Cdh1 (E-cadherin) expression. We show that Cdh1 activity during MET is governed by two enhancers at +. 7.8. kb and at +. 11.5. kb within intron 2 that are activated by binding of Grhl3 and Hnf4α, respectively. Recruitment of Grhl3 and Hnf4α to the enhancers is crucial for activating Cdh1 and accomplishing MET in non-tumorigenic mouse mammary gland cells (NMuMG). Moreover, the two enhancers cooperate via Grhl3 and Hnf4α binding, induction of DNA-looping and clustering at the promoter to orchestrate E-cadherin re-expression. Our results provide novel insights into the cellular mechanisms whereby cells respond to MET signals and re-establish an epithelial phenotype by enhancer cooperativity. A general importance of our findings including MET-mediated colonization of metastasizing tumor cells is suggested.Item Open Access Functionally conserved effects of rapamycin exposure on zebrafish(Spandidos Publications, 2016-03) Sucularli, C.; Shehwana, H.; Kuscu, C.; Dungul, D. C.; Ozdag, H.; Konu, O.Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well-known anti-cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta-analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose-dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin-modulated functional pathways between zebrafish and mice, in addition to the dose-dependent growth curves of zebrafish embryos upon rapamycin exposure.Item Open Access Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury(Elsevier Ltd, 2017) Yergoz, F.; Hastar, N.; Cimenci, C. E.; Ozkan, A. D.; Güler, Mustafa O.; Tekinay, A. B.; Tekinay, T.; Güler, Mustafa O.Burn injuries are one of the most common types of trauma worldwide, and their unique physiology requires the development of specialized therapeutic materials for their treatment. Here, we report the use of synthetic, functional and biodegradable peptide nanofiber gels for the improved healing of burn wounds to alleviate the progressive loss of tissue function at the post-burn wound site. These bioactive nanofiber gels form scaffolds that recapitulate the structure and function of the native extracellular matrix through signaling peptide epitopes, which can trigger angiogenesis through their affinity to basic growth factors. In this study, the angiogenesis-promoting properties of the bioactive scaffolds were utilized for the treatment of a thermal burn model. Following the excision of necrotic tissue, bioactive gels and control solutions were applied topically onto the wound area. The wound healing process was evaluated at 7, 14 and 21 days following injury through histological observations, immunostaining and marker RNA/protein analysis. Bioactive peptide nanofiber-treated burn wounds formed well-organized and collagen-rich granulation tissue layers, produced a greater density of newly formed blood vessels, and exhibited increased re-epithelialization and skin appendage development with minimal crust formation, while non-bioactive peptide nanofibers and the commercial wound dressing 3M™ Tegaderm™ did not exhibit significant efficiency over sucrose controls. Overall, the heparin-mimetic peptide nanofiber gels increased the rate of repair of burn injuries and can be used as an effective means of facilitating wound healing.Item Open Access Identification of novel neutralizing single-chain antibodies against vascular endothelial growth factor receptor 2(2011) Erdag, B.; Koray Balcioglu, B.; Ozdemir Bahadir, A.; Serhatli, M.; Kacar O.; Bahar, A.; Seker, U.O.S.; Akgun, E.; Ozkan, A.; Kilic, T.; Tamerler, C.; Baysal, K.Human vascular endothelial growth factor (VEGF) and its receptor (VEGFR-2/kinase domain receptor [KDR]) play a crucial role in angiogenesis, which makes the VEGFR-2 signaling pathway a major target for therapeutic applications. In this study, a single-chain antibody phage display library was constructed from spleen cells of mice immunized with recombinant human soluble extracellular VEGFR-2/KDR consisting of all seven extracellular domains (sKDR D1-7) to obtain antibodies that block VEGF binding to VEGFR-2. Two specific single-chain antibodies (KDR1.3 and KDR2.6) that recognized human VEGFR-2 were selected; diversity analysis of the clones was performed by BstNI fingerprinting and nucleotide sequencing. The single-chain variable fragments (scFvs) were expressed in soluble form and specificity of interactions between affinity purified scFvs and VEGFR-2 was confirmed by ELISA. Binding of the recombinant antibodies for VEGFR-2 receptors was investigated by surface plasmon resonance spectroscopy. In vitro cell culture assays showed that KDR1.3 and KDR2.6 scFvs significantly suppressed the mitogenic response of human umbilical vein endothelial cells to recombinant human VEGF 165 in a dose-dependent manner, and reduced VEGF-dependent cell proliferation by 60% and 40%, respectively. In vivo analysis of these recombinant antibodies in a rat cornea angiogenesis model revealed that both antibodies suppressed the development of new corneal vessels (p < 0.05). Overall, in vitro and in vivo results disclose strong interactions of KDR1.3 and KDR2.6 scFvs with VEGFR-2. These findings indicate that KDR1.3 and KDR2.6 scFvs are promising antiangiogenic therapeutic agents. © 2011 International Union of Biochemistry and Molecular Biology, Inc.Item Open Access Imetelstat (a telomerase antagonist) exerts off target effects on the cytoskeleton(2013) Mender I.; Senturk, S.; Ozgunes, N.; Can Akcali, K.; Kletsas, D.; Gryaznov, S.; Can, A.; Shay J.W.; Dikmen, Z.G.Telomerase is a cellular ribonucleoprotein reverse transcriptase that plays a crucial role in telomere maintenance. This enzyme is expressed in approximately 90% of human tumors, but not in the majority of normal somatic cells. Imetelstat sodium (GRN163L), is a 13-mer oligonucleotide N3'→P5' thio-phosphoramidate lipid conjugate, which represents the latest generation of telomerase inhibitors targeting the template region of the human functional telomerase RNA (hTR) subunit. In preclinical trials, this compound has been found to inhibit telomerase activity in multiple cancer cell lines, as well as in vivo xenograft mouse models. Currently, GRN163L is being investigated in several clinical trials, including a phase II human non small cell lung cancer clinical trial, in a maintenance setting following standard doublet chemotherapy. In addition to the inhibition of telomerase activity in cancer cell lines, GRN163L causes morphological cell rounding changes, independent of hTR expression or telomere length. This leads to the loss of cell adhesion properties; however, the mechanism underlying this effect is not yet fully understood. In the present study, we observed that GRN163L treatment leads to the loss of adhesion in A549 lung cancer cells, due to decreased E-cadherin expression, leading to the disruption of the cytoskeleton through the alteration of actin, tubulin and intermediate filament organization. Consequently, the less adherent cancer cells initially cease to proliferate and are arrested in the G1 phase of the cell cycle, accompanied by decreased matrix metalloproteinase-2 (MMP-2) expression. These effects of GRN163L are independent of its telomerase catalytic activity and may increase the therapeutic efficacy of GRN163L by decreasing the adhesion, proliferation and metastatic potential of cancer cells in vivo.Item Open Access Impacts of high-fat diet and genotype on blood-brain barrier and synaptic integrity in mouse cerebral cortex: an exploration of perk pathway(2024-09) Şeker, BüşranurHigh-fat diet intake can induce hyperlipidemia and result in cognitive decline by causing endoplasmic reticulum stress, decreased blood-brain barrier, and synaptic integrity. The protein kinase R-like endoplasmic reticulum kinase (PERK) pathway is one of the arms of the unfolded protein response, which is activated by endoplasmic reticulum stress. The PERK inhibits the global protein translation while allowing the translation of certain proteins that are involved in inflammation and apoptosis. Due to its apoptotic properties, it is thought that the PERK pathway causes neurodegeneration. To study the effects of hyperlipidemia, a high-fat diet-fed Apoe knock-out mice model (Apoe-/-) is appropriate. Knocking out the Apoe in mice makes the animal model more prone to high-fat diet-induced hyperlipidemia. In the cerebral cortex of these animals, endoplasmic reticulum stress, blood-brain barrier, and synaptic integrity markers are checked at protein and mRNA levels. No changes are observed in the PERK pathway markers besides phosphorylated eukaryotic Initiation Factor 2. Additionally, there is a significant increase in blood-brain barrier marker Claudin-5 levels in Apoe-/- mice fed with a high-fat diet. There is also no significant change in synaptic integrity markers. In the second part, the effects of the PERK pathway inhibition are checked with integrated stress response inhibitor and GSK2606414 in the high-fat diet-fed Apoe-/- mice cerebral cortex. There are no significant alterations in BBB and synaptic integrity when the animals are injected with inhibitors. In conclusion, this study investigates the effects of high-fat diet induced hyperlipidemia in the cerebral cortex of Apoe-/- mice on ER stress, blood-brain barrier, and synaptic integrity. In the cerebral cortex region, the PERK pathway-related ER stress is not observed, and synaptic integrity remained unchanged while the blood-brain barrier is affected. Moreover, the effects of the PERK pathway inhibition are researched, and there is no inhibition effect observed in the cerebral cortex region.Item Open Access Induction of potent protection against acute and latent herpes simplex virus infection in mice vaccinated with dendritic cells(2013) Ghasemi, M.; Erturk, M.; Buruk, K.; Sonmez, M.Background aims. Dendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice. Methods. DCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge. Results. Intramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody. Conclusions. Overall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus. © 2013, International Society for Cellular Therapy.Item Open Access mESAdb: microRNA expression and sequence analysis database(Oxford University Press, 2011) Kaya, Koray D.; Karakülah, G.; Yakıcıer, Cengiz M.; Acar, Aybar C.; Konu, ÖzlenMicroRNA expression and sequence analysis database (http://konulab.fen. bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.Item Open Access The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelialmesenchymal transition in breast cancer(Impact Journals LLC, 2016) Raza, U.; Saatci, O.; Uhlmann, S.; Ansari, S. A.; Eyüpoglu, E.; Yurdusev, E.; Mutlu, M.; Ersan, P. G.; Altundağ, M. K.; Zhang, J. D.; Dogan, H. T.; Güler, G.; Şahin, Ö.Tumor cells develop drug resistance which leads to recurrence and distant metastasis. MicroRNAs are key regulators of tumor pathogenesis; however, little is known whether they can sensitize cells and block metastasis simultaneously. Here, we report miR-644a as a novel inhibitor of both cell survival and EMT whereby acting as pleiotropic therapy-sensitizer in breast cancer. We showed that both miR-644a expression and its gene signature are associated with tumor progression and distant metastasis-free survival. Mechanistically, miR-644a directly targets the transcriptional co-repressor C-Terminal Binding Protein 1 (CTBP1) whose knock-outs by the CRISPRCas9 system inhibit tumor growth, metastasis, and drug resistance, mimicking the phenotypes induced by miR-644a. Furthermore, downregulation of CTBP1 by miR-644a upregulates wild type- or mutant-p53 which acts as a 'molecular switch' between G1-arrest and apoptosis by inducing cyclin-dependent kinase inhibitor 1 (p21, CDKN1A, CIP1) or pro-apoptotic phorbol-12-myristate-13-acetate-induced protein 1 (Noxa, PMAIP1), respectively. Interestingly, an increase in mutant-p53 by either overexpression of miR-644a or downregulation of CTBP1 was enough to shift this balance in favor of apoptosis through upregulation of Noxa. Notably, p53- mutant patients, but not p53-wild type ones, with high CTBP1 have a shorter survival suggesting that CTBP1 could be a potential prognostic factor for breast cancer patients with p53 mutations. Overall, re-activation of the miR-644a/CTBP1/p53 axis may represent a new strategy for overcoming both therapy resistance and metastasis.Item Open Access MST1 is a multifunctional caspase-independent inhibitor of androgenic signaling(2011) Cinar, B.; Collak F.K.; Lopez, D.; Akgul, S.; Mukhopadhyay, N.K.; Kilicarslan, M.; Gioeli, D.G.; Freeman, M.R.The MST1 serine - threonine kinase, a component of the RASSF1-LATS tumor suppressor network, is involved in cell proliferation and apoptosis and has been implicated in cancer. However, the physiologic role of MST1 in prostate cancer (PCa) is not well understood. Here, we investigated the possibility of a biochemical and functional link between androgen receptor (AR) and MST1 signaling. We showed that MST1 forms a protein complex with AR and antagonizes AR transcriptional activity as shown by coimmunoprecipitation (co-IP), promoter reporter analysis, and molecular genetic methods. In vitro kinase and site-specific mutagenesis approaches indicate that MST1 is a potent AR kinase; however, the kinase activity of MST1 and its proapoptotic functions were shown not to be involved in inhibition of AR. MST1 was also found in AR - chromatin complexes, and enforced expression of MST1 reduced the binding of AR to a well-characterized, androgen-responsive region within the prostate-specific antigen promoter. MST1 suppressed PCa cell growth in vitro and tumor growth in mice. Because MST1 is also involved in regulating the AKT1 pathway, this kinase may be an important new link between androgenic and growth factor signaling and a novel therapeutic target in PCa. ©2011 AACR.Item Open Access A new triazolothiadiazine derivative inhibits stemness and induces cell death in HCC by oxidative stress dependent JNK pathway activation(Nature Research, 2022-09-07) Kahraman, Deniz Cansen; Bilget Guven, Ebru; Aytac, Peri S.; Aykut, Gamze; Tozkoparan, Birsen; Cetin Atalay, RengulHepatocellular carcinoma (HCC) is a highly heterogeneous cancer, and resistant to both conventional and targeted chemotherapy. Recently, nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the incidence and mortality of different types of cancers. Here, we investigated the cellular bioactivities of a series of triazolothiadiazine derivatives on HCC, which have been previously reported as potent analgesic/anti-inflammatory compounds. From the initially tested 32 triazolothiadiazine NSAID derivatives, 3 compounds were selected based on their IC50 values for further molecular assays on 9 different HCC cell lines. 7b, which was the most potent compound, induced G2/M phase cell cycle arrest and apoptosis in HCC cells. Cell death was due to oxidative stress-induced JNK protein activation, which involved the dynamic involvement of ASK1, MKK7, and c-Jun proteins. Moreover, 7b treated nude mice had a significantly decreased tumor volume and prolonged disease-free survival. 7b also inhibited the migration of HCC cells and enrichment of liver cancer stem cells (LCSCs) alone or in combination with sorafenib. With its ability to act on proliferation, stemness and the migration of HCC cells, 7b can be considered for the therapeutics of HCC, which has an increased incidence rate of ~ 3% annually. © 2022, The Author(s).Item Open Access One-Step Fabrication of Biocompatible Multifaceted Nanocomposite Gels and Nanolayers(American Chemical Society, 2017) Topuz, F.; Bartneck, M.; Pan, Y.; Tacke, F.Nanocomposite gels are a fascinating class of polymeric materials with an integrative assembly of organic molecules and organic/inorganic nanoparticles, offering a unique hybrid network with synergistic properties. The mechanical properties of such networks are similar to those of natural tissues, which make them ideal biomaterial candidates for tissue engineering applications. Existing nanocomposite gel systems, however, lack many desirable gel properties, and their suitability for surface coatings is often limited. To address this issue, this article aims at generating multifunctional nanocomposite gels that are injectable with an appropriate time window, functional with bicyclononynes (BCN), biocompatible and slowly degradable, and possess high mechanical strength. Further, the in situ network-forming property of the proposed system allows the fabrication of ultrathin nanocomposite coatings in the submicrometer range with tunable wettability and roughness. Multifunctional nanocomposite gels were fabricated under cytocompatible conditions (pH 7.4 and T = 37 °C) using laponite clays, isocyanate (NCO)-terminated sP(EO-stat-PO) macromers, and clickable BCN. Several characterization techniques were employed to elucidate the structure-property relationships of the gels. Even though the NCO-sP(EO-stat-PO) macromers could form a hydrogel network in situ on contact with water, the incorporation of laponite led to significant improvement of the mechanical properties. BCN motifs with carbamate links were used for a metal-free click ligation with azide-functional molecules, and the subsequent gradual release of the tethered molecules through the hydrolysis of carbamate bonds was shown. The biocompatibility of the hydrogels was examined through murine macrophages, showing that the material composition strongly affects cell behavior.Item Open Access Patrolling monocytes control tumor metastasis to the lung(American Association for the Advancement of Science, 2015) Hanna, R. N.; Cekic, C.; Sag, D.; Tacke, R.; Thomas, G. D.; Nowyhed, H.; Herrley, E.; Rasquinha, N.; McArdle, S.; Wu, R.; Peluso, E.; Metzger, D.; Ichinose, H.; Shaked, I.; Chodaczek, G.; Biswas, S. K.; Hedrick, C. C.The immune system plays an important role in regulating tumor growth and metastasis. Classical monocytes promote tumorigenesis and cancer metastasis, but how nonclassical "patrolling" monocytes (PMo) interact with tumors is unknown. Here we show that PMo are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack PMo, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient PMo into Nr4a1-deficient mice prevented tumor invasion in the lung. PMo established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature, and promoted natural killer cell recruitment and activation. Thus, PMo contribute to cancer immunosurveillance and may be targets for cancer immunotherapy.Item Open Access Prostate stem cell antigen is an endogenous lynx1-like prototoxin that antagonizes α7-containing nicotinic receptors and prevents programmed cell death of parasympathetic neurons(2009) Hruska, M.; Keefe J.; Wert, D.; Tekinay, A.B.; Hulce J.J.; Ibañez-Tallon I.; Nishi, R.Vertebrate α-bungarotoxin-like molecules of the Ly-6 superfamily have been implicated as balancers of activity and survival in the adult nervous system. To determine whether a member of this family could be involved in the development of the avian ciliary ganglion, we identified 6 Gallus genes by their homology in structure to mouse lynx1 and lynx2. One of these genes, an ortholog of prostate stem cell antigen (psca), is barely detectable at embryonic day (E) 8, before neuronal cell loss in the ciliary ganglion, but increases > 100-fold as the number of neurons begins to decline between E9 and E14. PSCA is highly expressed in chicken and mouse telencephalon and peripheral ganglia and correlates with expression of α7-containing nicotinic acetylcholine receptors (α7-nAChRs). Misexpressing PSCA before cell death in the ciliary ganglion blocks α7-nAChR activation by nicotine and rescues the choroid subpopulation from dying. Thus, PSCA, a molecule previously identified as a marker of prostate cancer, is a member of the Ly-6 neurotoxin-like family in the nervous system, and is likely to play a role as a modulator of α7 signaling-induced cell death during development. Copyright © 2009 Society for Neuroscience.Item Open Access The prosurvival IKK-related kinase IKKϵ integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine(American Association for Cancer Research, 2016-05) Göktuna, S. I.; Shostak, K.; Chau, T.-L.; Heukamp, L.C.; Hennuy, B.; Duong, H.-Q.; Ladang, A.; Close, P.; Klevernic, I.; Olivier, F.; Florin, A.; Ehx, G.; Baron, F.; Vandereyken, M.; Rahmouni, S.; Vereecke, L.; Loo, G. V.; Büttner, R.; Greten, F. R.; Chariot, A.Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the proinflammatory Ikk-related kinase Ikkϵ in Wnt-driven tumor development. We found that Ikkϵ was activated in intestinal tumors forming upon loss of the tumor suppressor Apc. Genetic ablation of Ikkϵ in b-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikkϵ to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. In addition, Ikkϵ was also required for lipopolysaccharide (LPS) and IL17A-induced activation of Akt, Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding proinflammatory cytokines, chemokines, and anti-microbial peptides were downregulated in Ikkϵ-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL17A synthesis. Further studies revealed that IL17A synergized with commensal bacteria to trigger Ikkϵ phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS, and IL17A-dependent signaling pathways converge on Ikkϵ to promote cell survival and to establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation.Item Open Access A role for LYNX2 in anxiety-related behavior(2009) Tekinay, A.B.; Nong, Y.; Miwa J.M.; Lieberam I.; Ibanez-Tallon I.; Greengard P.; Heintz, N.Anxiety disorders are the most prevalent mental disorders in developed societies. Although roles for the prefrontal cortex, amygdala, hippocampus and mediodorsal thalamus in anxiety disorders are well documented, molecular mechanisms contributing to the functions of these structures are poorly understood. Here we report that deletion of Lynx2, a mammalian prototoxin gene that is expressed at high levels in anxiety associated brain areas, results in elevated anxiety-like behaviors. We show that LYNX2 can bind to and modulate neuronal nicotinic receptors, and that loss of Lynx2 alters the actions of nicotine on glutamatergic signaling in the prefrontal cortex. Our data identify Lynx2 as an important component of the molecular mechanisms that control anxiety, and suggest that altered glutamatergic signaling in the prefrontal cortex of Lynx2 mutant mice contributes to increased anxiety-related behaviors.