Browsing by Subject "Macrophage"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Biological properties of extracellular vesicles and their physiological functions(Taylor & Francis, 2015) Yáñez-Mó, M.; Siljander, P. R. M.; Andreu, Z.; Zavec, A. B.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colás, E.; Cordeiro-Da, S. A.; Fais, S.; Falcon-Perez, J. M.; Ghobrial, I. M.; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N. H. H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Krämer-Albers, E. M.; Laitinen, S.; Lässer, C.; Lener, T.; Ligeti, E.; Line, A.; Lipps, G.; Llorente, A.; Lötvall, J.; Manček-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-'t Hoen, E. N. M.; Nyman, T. A.; O'Driscoll, L.; Olivan, M.; Oliveira, C.; Pállinger, E.; Del Portillo, H. A.; Reventós, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sánchez-Madrid, F.; Santarém, N.; Schallmoser, K.; Ostenfeld, M. S.; Stoorvogel, W.; Stukelj, R.; Grein V. D. S.G.; Helena,ü V. M.; Wauben, M. H. M.; De Wever, O.In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells.While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.Item Open Access Identification of differentially expressed microRNAs during lipotoxic endoplasmic reticulum stress in RAW264.7 macrophages(Turkish Biochemistry Society, 2016-06) Nadir, M.; Tufanlı, Ö.; Erbay, E.; Atalay, A.Objective: Increased fatty acids in the circulation and their accumulation in non-adipose tissues play a significant role in the development of obesity related metabolic and inflammatory disorders such as insulin resistance, diabetes and atherosclerosis. While fat tissue has the ability to store excess fatty acids, uptake of excess fatty acids to other tissues burdens intracellular metabolic organelles such as mitochondria and endoplasmic reticulum (ER), leading to stress response and lipotoxic cell death. Unfolded protein response (UPR) is a key adaptation of the ER to stress. It is still not completely clear how lipids engage the UPR and how UPR manages both the adaptive and destructive consequences under its control. Increasing evidence point to the importance of miRNA regulation of the UPR as well as UPR’s role in miRNA biogenesis. In order to understand how lipids engage the UPR, we set forth to identify microRNAs regulated by lipotoxic ER stress in macrophages. Methods: We stressed the mouse macrophage cell line (RAW 264.7) with a saturated fatty acid, 500μM palmitate, reflecting the levels found in the circulation of obese patients. We analyzed the microRNAome profiles of this cell line using QRT-PCR based miScript miRNA PCR array which contained all known mouse microRNAs in miRBase release16 and performed pathway analysis for potential targets. Results: 227 microRNAs showed altered expression levels; 43 microRNAs above 2 fold difference and 13 microRNAs 3-24 fold difference. Pathway analysis enriched the target mRNAs of these lipotoxic ER stress associated miRNAs. Conclusion: When exposed to high concentrations of saturated fatty acids that can induce ER stress, macrophages display a dynamic range of changes in their microRNAome profiles. Our findings reflect the consequences of lipotoxic stress on circulating monocytes and tissue-associated macrophages in obesity. Further studies are needed to deliniate which UPR arm is reponsible for the microRNA changes reported here.Item Open Access Inositol‐requiring enzyme‐1 regulates phosphoinositide signaling lipids and macrophage growth(Wiley-VCH Verlag, 2020-11) Hamid, S. M.; Çıtır, M.; Terzi, E. M.; Çimen, İ.; Yıldırım, Zehra; Doğan, Aslı Ekin; Kocatürk, B.; Onat, Umut Inci; Arditi, M.; Weber, C.; Traynor‐Kaplan, A.; Schultz, C.; Erbay, E.The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.Item Open Access Jnk1 deficiency in hematopoietic cells suppresses macrophage apoptosis and increases atherosclerosis in low-density lipoprotein receptor null mice(Lippincott Williams and Wilkins, 2016) Babaev, V. R.; Yeung, M.; Erbay, E.; Ding, L.; Zhang, Y.; May, J. M.; Fazio, S.; Hotamisligil, G. S.; Linton, M. F.Objective - The c-Jun NH 2 -terminal kinases (JNK) are regulated by a wide variety of cellular stresses and have been implicated in apoptotic signaling. Macrophages express 2 JNK isoforms, JNK1 and JNK2, which may have different effects on cell survival and atherosclerosis. Approach and Results - To dissect the effect of macrophage JNK1 and JNK2 on early atherosclerosis, Ldlr-/- mice were reconstituted with wild-type, Jnk1-/-, and Jnk2-/- hematopoietic cells and fed a high cholesterol diet. Jnk1-/- →Ldlr-/- mice have larger atherosclerotic lesions with more macrophages and fewer apoptotic cells than mice transplanted with wild-type or Jnk2-/- cells. Moreover, genetic ablation of JNK to a single allele (Jnk1+/- /Jnk2-/- or Jnk1-/- /Jnk2+/-) in marrow of Ldlr-/- recipients further increased atherosclerosis compared with Jnk1-/- →Ldlr-/- and wild-type→Ldlr-/- mice. In mouse macrophages, anisomycin-mediated JNK signaling antagonized Akt activity, and loss of Jnk1 gene obliterated this effect. Similarly, pharmacological inhibition of JNK1, but not JNK2, markedly reduced the antagonizing effect of JNK on Akt activity. Prolonged JNK signaling in the setting of endoplasmic reticulum stress gradually extinguished Akt and Bad activity in wild-type cells with markedly less effects in Jnk1-/- macrophages, which were also more resistant to apoptosis. Consequently, anisomycin increased and JNK1 inhibitors suppressed endoplasmic reticulum stress-mediated apoptosis in macrophages. We also found that genetic and pharmacological inhibition of phosphatase and tensin homolog abolished the JNK-mediated effects on Akt activity, indicating that phosphatase and tensin homolog mediates crosstalk between these pathways. Conclusions - Loss of Jnk1, but not Jnk2, in macrophages protects them from apoptosis, increasing cell survival, and this accelerates early atherosclerosis.Item Open Access Purinergic regulation of the immune system(Nature Publishing Group, 2016) Cekic, C.; Linden, J.Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.Item Open Access RAW264.7 makrofajlarında lipotoksik endoplazmik retikulum stres sürecinde ifadesi değişen mikroRNAların tanımlanması(Türk Biyokimya Derneği, 2016) Nadir, M.; Tufanlı, Özlem; Erbay, Ebru; Atalay, A.Amaç: Kan dolaşımındaki serbest yağ asitlerinin artışı ve adipoz olmayan dokulardaki birikimi, insülin direnci, diyabet ve ateroskleroz gibi obezite ile ilişkili metabolik ve emflamatuvar hastalıkların gelişiminde önemli rol oynar. Yağ dokusu, fazla olan yağ asidini depolayabilme kabiliyetine sahipken, diğer dokulara ulaşan fazla miktarda yağ asidi, endoplazmik retikulum (ER) ve mitokondri gibi intraselüler metabolik organelleri zorlayarak stres cevabının oluşmasına ve lipotoksik hücre ölümüne neden olur. Katlanmamış protein yanıtı (KPY) endoplazmik retikulumun strese karşı önemli bir adaptasyonudur. Lipidler ile KPY arasındaki ilişkinin nasıl olduğu ve katlanmamış protein yanıtı ile adaptif ve destrüktif sonuçların nasıl yönetildiği halen tam olarak aydınlatılamamıştır. miRNA biyogenezinde KPY'nın rolünün yanı sıra, katlanmamış protein yanıtını düzenleyen miRNAların önemine işaret eden kanıtlar bulunmaktadır. Bu çalışmada lipidler ile KPY arasındaki ilişkiyi anlamak için, makrofajlardaki lipotoksik ER stresi sürecinde düzenlenen mikroRNA'ların tanımlanması amaçlanmıştır.Metod: Fare makrofaj hücre hattına (RAW 264.7), serbest yağ asidi olan 500 µM palmitat -obez hastaların kan dolaşımındaki seviyede- uygulanarak stres oluşturulmuştur. miRBase sürüm 16'daki bilinen tüm fare mikroRNAlarını içeren QRT-PCR temelli miSCRİPT miRNA PCR array sistemi kullanılarak, hücrelerdeki tüm mikroRNAom profili analiz edilmiş ve potansiyel hedefler için yolak analizleri gerçekleştirilmiştir.Bulgular: Lipotoksik ER stres sonucu, 227 mikroRNA'nın ifade seviyesi 2 kat üzerinde değişmiş ve 43'ü 2 kattan fazla,13'ü ise 3-24 kat değişim göstermiştir. Yolak analizi gerçekleştirilerek lipotoksik ER stresi ile ilişkili mikroRNA'ların mRNA hedefleri belirlenmiş ve gruplanmıştır.Sonuç: Makrofajlar, ER stresini indükleyebilen yüksek konsantrasyondaki doymuş yağ asidine maruz bırakıldığında mikroRNAome profillerinde dinamik bir değişim gözlenmektedir. Bulgularımız, obezitedeki doku ilişkili makrofajlar ve kan dolaşımındaki monositlerdeki lipotoksik stres sonuçlarını yansıtmaktadır. Detaylı çalışmalar gerçekleştirilerek, lipotoksik ER stresi sürecinde ifadesinin değiştiğini rapor ettiğimiz mikroRNA değişimlerinden hangi KPY yolağının sorumlu olduğu belirlenebilir.Item Open Access Unfolded protein response regulated mirnas in lipotoxic endoplasmic reticulum stress in macrophages(2014-07) Terzi, Erdem MuratThe proper functioning and the development of the cell is essential to the fitness of the multicellular organisms - any significant disturbances in cellular mechanisms can lead to a multitude of diseases or death. Among these conditions, the global rise in metabolic diseases like obesity, diabetes and atherosclerosis draw significant research interest focus. Since the prevalence of metabolic disorders in the developed and underdeveloped world is expected to increase further in next decade; understanding the contributing cellular mechanisms is vital for the development of new and effective diagnostic and therapeutic tools against this devastating disease cluster. Among the homeostatic cellular pathways important for health the Unfolded Protein Response (UPR) is highly conserved from yeast to mammals. Aside from most conserved UPR branch Inositol-requiring protein 1(IRE1), the mammalian UPR is composed of three different pathways regulated by IRE1, eukaryotic translation initiation factor 2-alpha kinase 3 (PERK), and activating transcription factor 6 (ATF6). The UPR signaling is activated in response to the accumulation of unfolded or misfolded proteins in ER that leads to endoplasmic reticulum (ER) stress. The goal of the UPR is to re-establish ER homeostasis via inhibition of further protein translation and promoting protein folding. In the case of severe or unresolved ER stress, UPR instead triggers a programmed cell death. Recent studies indicate that noncoding regulatory RNAs such as microRNAs (miRNAs) play important role in both upstream and downstream of the UPR. In this thesis, the regulation of miRNA expression by the different UPR arms are examined in macrophages under lipidinduced or lipotoxic ER stress conditions. The results of PCR array studies of RNA obtained from mouse macrophages stressed with a saturated fatty acid, palmitate (PA) , revealed multiple differentially regulated miRNAs. Among these miRNAs, significantly regulated ones were further examined for their regulation by the different arms of the UPR. Towards this end several complementary approaches were taken: First, significantly regulated microRNAs from microRNA PCR array results were analyzed. Next, macrophages were treated with palmitate after transfection with IRE1 and PERK silencer RNA (siRNA) to assess the role of UPR arms in lipid regulated miRNA regulation and the expression of relevant miRNAs was examined in treated macrophages. As an alternative method, macrophages were treated simultaneously with palmitate and specific inhibitors for IRE1’s endoribonuclease or PERK’s kinase activity. Then miRNA expressions were further examined in IRE1 knock-out mouse embryonic fibroblast (MEF) cell lines transfected with the wild type (WT) IRE or the endoribonuclease domain inactive (RD) mutant of IRE1 to verify the specific regulation of the miRNA by the IRE1’s endoribonuclease activity. As a result, upregulation of miR-2137 expression by palmitate was determined as IRE1-endoribonuclease dependent. Next, potential target mRNAs were examined by the overexpression or knock-down of miR-2137 in macrophages. One possible target mRNA was found to be inositol polyphosphate phosphatase-like 1 (Innpl1) . Aside from miR-2137, miR-33 also showed significant alteration upon PA treatment in macrophages. Since the role of miR-33 in atherosclerosis, obesity and insulin resistance is well established, its expression was studied further in RAW 264.7 macrophage cell line and bone marrow-derived primary macrophages after IRE1 and PERK knock-down with siRNA. ATP-binding cassette, sub-family A (ABC1), member 1 (ABCA1), a known target of miR-33, was investigated as down-stream target of miR-33 in PA treated macrophages, in an IRE1 dependent manner. The results of this study uncovered new UPR regulated miRNAs under lipid stress in macrophages. Excess lipid is one of the prominent causes in metabolic diseases – obesity, atherosclerosis, insulin resistance – and these UPR regulated miRNAs may explain the underlying mechanism behind this set of diseases. Furthermore, the possible gene targets for these miRNAs could be responsible for progression of such conditions. Further studies are needed to reveal the exact mechanisms that can lead to the development of novel therapeutic approaches.