Browsing by Subject "Latency"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Cartesian partitioning models for 2D and 3D parallel SpGEMM algorithms(IEEE, 2020) Demirci, Gündüz Vehbi; Aykanat, CevdetThe focus is distributed-memory parallelization of sparse-general-matrix-multiplication (SpGEMM). Parallel SpGEMM algorithms are classified under one-dimensional (1D), 2D, and 3D categories denoting the number of dimensions by which the 3D sparse workcube representing the iteration space of SpGEMM is partitioned. Recently proposed successful 2D- and 3D-parallel SpGEMM algorithms benefit from upper bounds on communication overheads enforced by 2D and 3D cartesian partitioning of the workcube on 2D and 3D virtual processor grids, respectively. However, these methods are based on random cartesian partitioning and do not utilize sparsity patterns of SpGEMM instances for reducing the communication overheads. We propose hypergraph models for 2D and 3D cartesian partitioning of the workcube for further reducing the communication overheads of these 2D- and 3D- parallel SpGEMM algorithms. The proposed models utilize two- and three-phase partitioning that exploit multi-constraint hypergraph partitioning formulations. Extensive experimentation performed on 20 SpGEMM instances by using upto 900 processors demonstrate that proposed partitioning models significantly improve the scalability of 2D and 3D algorithms. For example, in 2D-parallel SpGEMM algorithm on 900 processors, the proposed partitioning model respectively achieves 85 and 42 percent decrease in total volume and total number of messages, leading to 1.63 times higher speedup compared to random partitioning, on average.Item Open Access Partitioning models for scaling parallel sparse matrix-matrix multiplication(Association for Computing Machinery, 2018) Akbudak, Kadir; Selvitopi, Oğuz; Aykanat, CevdetWe investigate outer-product--parallel, inner-product--parallel, and row-by-row-product--parallel formulations of sparse matrix-matrix multiplication (SpGEMM) on distributed memory architectures. For each of these three formulations, we propose a hypergraph model and a bipartite graph model for distributing SpGEMM computations based on one-dimensional (1D) partitioning of input matrices. We also propose a communication hypergraph model for each formulation for distributing communication operations. The computational graph and hypergraph models adopted in the first phase aim at minimizing the total message volume and balancing the computational loads of processors, whereas the communication hypergraph models adopted in the second phase aim at minimizing the total message count and balancing the message volume loads of processors. That is, the computational partitioning models reduce the bandwidth cost and the communication hypergraph models reduce the latency cost. Our extensive parallel experiments on up to 2048 processors for a wide range of realistic SpGEMM instances show that although the outer-product--parallel formulation scales better, the row-by-row-product--parallel formulation is more viable due to its significantly lower partitioning overhead and competitive scalability. For computational partitioning models, our experimental findings indicate that the proposed bipartite graph models are attractive alternatives to their hypergraph counterparts because of their lower partitioning overhead. Finally, we show that by reducing the latency cost besides the bandwidth cost through using the communication hypergraph models, the parallel SpGEMM time can be further improved up to 32%.Item Open Access A Recursive Hypergraph Bipartitioning Framework for Reducing Bandwidth and Latency Costs Simultaneously(IEEE Computer Society, 2017) Selvitopi, O.; Acer, S.; Aykanat, CevdetIntelligent partitioning models are commonly used for efficient parallelization of irregular applications on distributed systems. These models usually aim to minimize a single communication cost metric, which is either related to communication volume or message count. However, both volume- and message-related metrics should be taken into account during partitioning for a more efficient parallelization. There are only a few works that consider both of them and they usually address each in separate phases of a two-phase approach. In this work, we propose a recursive hypergraph bipartitioning framework that reduces the total volume and total message count in a single phase. In this framework, the standard hypergraph models, nets of which already capture the bandwidth cost, are augmented with message nets. The message nets encode the message count so that minimizing conventional cutsize captures the minimization of bandwidth and latency costs together. Our model provides a more accurate representation of the overall communication cost by incorporating both the bandwidth and the latency components into the partitioning objective. The use of the widely-adopted successful recursive bipartitioning framework provides the flexibility of using any existing hypergraph partitioner. The experiments on instances from different domains show that our model on the average achieves up to 52 percent reduction in total message count and hence results in 29 percent reduction in parallel running time compared to the model that considers only the total volume. © 2016 IEEE.Item Open Access Reduce operations: send volume balancing while minimizing latency(IEEE, 2020) Karsavuran, M. Ozan; Acer, S.; Aykanat, CevdetCommunication hypergraph model was proposed in a two-phase setting for encapsulating multiple communication cost metrics (bandwidth and latency), which are proven to be important in parallelizing irregular applications. In the first phase, computational-task-to-processor assignment is performed with the objective of minimizing total volume while maintaining computational load balance. In the second phase, communication-task-to-processor assignment is performed with the objective of minimizing total number of messages while maintaining communication-volume balance. The reduce-communication hypergraph model suffers from failing to correctly encapsulate send-volume balancing. We propose a novel vertex weighting scheme that enables part weights to correctly encode send-volume loads of processors for send-volume balancing. The model also suffers from increasing the total communication volume during partitioning. To decrease this increase, we propose a method that utilizes the recursive bipartitioning framework and refines each bipartition by vertex swaps. For performance evaluation, we consider column-parallel SpMV, which is one of the most widely known applications in which the reduce-task assignment problem arises. Extensive experiments on 313 matrices show that, compared to the existing model, the proposed models achieve considerable improvements in all communication cost metrics. These improvements lead to an average decrease of 30 percent in parallel SpMV time on 512 processors for 70 matrices with high irregularity.Item Open Access Regularizing irregularly sparse point-to-point communications(Association for Computing Machinery, 2019) Selvitopi, O.; Aykanat, CevdetThis work tackles the communication challenges posed by the latency-bound applications with irregular communication patterns, i.e., applications with high average and/or maximum message counts. We propose a novel algorithm for reorganizing a given set of irregular point-to-point messages with the objective of reducing total latency cost at the expense of increased volume. We organize processes into a virtual process topology inspired by the k-ary n-cube networks and regularize irregular messages by imposing regular communication pattern(s) onto them. Exploiting this process topology, we propose a flexible store-and-forward algorithm to control the trade-off between latency and volume. Our approach is able to reduce the communication time of sparse-matrix multiplication with latency-bound instances drastically: up to 22.6× for 16K processes on a 3D Torus network and up to 7.2× for 4K processes on a Dragonfly network, with its performance getting better with increasing number of processes.