Regularizing irregularly sparse point-to-point communications
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This work tackles the communication challenges posed by the latency-bound applications with irregular communication patterns, i.e., applications with high average and/or maximum message counts. We propose a novel algorithm for reorganizing a given set of irregular point-to-point messages with the objective of reducing total latency cost at the expense of increased volume. We organize processes into a virtual process topology inspired by the k-ary n-cube networks and regularize irregular messages by imposing regular communication pattern(s) onto them. Exploiting this process topology, we propose a flexible store-and-forward algorithm to control the trade-off between latency and volume. Our approach is able to reduce the communication time of sparse-matrix multiplication with latency-bound instances drastically: up to 22.6× for 16K processes on a 3D Torus network and up to 7.2× for 4K processes on a Dragonfly network, with its performance getting better with increasing number of processes.