Cartesian partitioning models for 2D and 3D parallel SpGEMM algorithms

Date
2020
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Parallel and Distributed Systems
Print ISSN
1045-9219
Electronic ISSN
Publisher
IEEE
Volume
31
Issue
12
Pages
2763 - 2775
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

The focus is distributed-memory parallelization of sparse-general-matrix-multiplication (SpGEMM). Parallel SpGEMM algorithms are classified under one-dimensional (1D), 2D, and 3D categories denoting the number of dimensions by which the 3D sparse workcube representing the iteration space of SpGEMM is partitioned. Recently proposed successful 2D- and 3D-parallel SpGEMM algorithms benefit from upper bounds on communication overheads enforced by 2D and 3D cartesian partitioning of the workcube on 2D and 3D virtual processor grids, respectively. However, these methods are based on random cartesian partitioning and do not utilize sparsity patterns of SpGEMM instances for reducing the communication overheads. We propose hypergraph models for 2D and 3D cartesian partitioning of the workcube for further reducing the communication overheads of these 2D- and 3D- parallel SpGEMM algorithms. The proposed models utilize two- and three-phase partitioning that exploit multi-constraint hypergraph partitioning formulations. Extensive experimentation performed on 20 SpGEMM instances by using upto 900 processors demonstrate that proposed partitioning models significantly improve the scalability of 2D and 3D algorithms. For example, in 2D-parallel SpGEMM algorithm on 900 processors, the proposed partitioning model respectively achieves 85 and 42 percent decrease in total volume and total number of messages, leading to 1.63 times higher speedup compared to random partitioning, on average.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)