Reduce operations: send volume balancing while minimizing latency

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
29
downloads

Citation Stats

Series

Abstract

Communication hypergraph model was proposed in a two-phase setting for encapsulating multiple communication cost metrics (bandwidth and latency), which are proven to be important in parallelizing irregular applications. In the first phase, computational-task-to-processor assignment is performed with the objective of minimizing total volume while maintaining computational load balance. In the second phase, communication-task-to-processor assignment is performed with the objective of minimizing total number of messages while maintaining communication-volume balance. The reduce-communication hypergraph model suffers from failing to correctly encapsulate send-volume balancing. We propose a novel vertex weighting scheme that enables part weights to correctly encode send-volume loads of processors for send-volume balancing. The model also suffers from increasing the total communication volume during partitioning. To decrease this increase, we propose a method that utilizes the recursive bipartitioning framework and refines each bipartition by vertex swaps. For performance evaluation, we consider column-parallel SpMV, which is one of the most widely known applications in which the reduce-task assignment problem arises. Extensive experiments on 313 matrices show that, compared to the existing model, the proposed models achieve considerable improvements in all communication cost metrics. These improvements lead to an average decrease of 30 percent in parallel SpMV time on 512 processors for 70 matrices with high irregularity.

Source Title

IEEE Transactions on Parallel and Distributed Systems

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English