Browsing by Subject "High efficiency"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access 48 W continuous-wave output power with high efficiency from a single emitter laser diode at 915 nm(SPIE - International Society for Optical Engineering, 2023-03-14) Yang, G.; Liu, Y.; Zhao, Yongming; Tang, S.; Zhao, Yuliang; Lan, Y.; Bai, L.; Li, Y.; Wang, X.; Demir, Abdullah; Zediker, Mark S.; Zucker, Erik P.Improving the power and efficiency of 9xx-nm broad-area laser diodes reduces the cost of laser systems and expands applications. LDs with more than 25 W output power combined with power conversion efficiency (PCE) above 65% can provide a cost-effective high-power laser module. We report a high output power and high conversion efficiency laser diode operating at 915 nm by investigating the influence of the laser internal parameters on its output. The asymmetric epitaxial structure is optimized to achieve low optical loss while considering high internal efficiency, low series resistance, and modest optical confinement factor. Experimental results show an internal optical loss of 0.31 cm-1 and internal efficiency of 96%, in agreement with our simulation results. Laser diodes with 230 μm emitter width and 5 mm cavity length have T0 and T1 characteristic temperatures of 152 and 567 K, respectively. The maximum power conversion efficiency reaches 74.2% at 5 °C and 72.6% at 25 °C, and the maximum output power is 48.5 W at 48 A (at 30 ℃), the highest reported for a 9xx-nm single emitter laser diode. At 25 oC, a high PCE of 67.5% is achieved for the operating power of 30 W at 27.5 A, and the lateral far-field angle with 95% power content is around 8°. Life test results show no failure in 1200 hours for 55 laser diodes. In addition, 55.5 W output was achieved at 55 A from a laser diode with 400 μm emitter width and 5.5 mm cavity length. A high PCE of 64.3% is obtained at 50 W with 47 A. © 2023 SPIE.Item Open Access 808 nm broad-area laser diodes designed for high efficiency at high-temperature operation(Institute of Physics Publishing Ltd., 2021-09-21) Lan, Y.; Yang, G.; Liu, Y.; Zhao, Y.; Wang, Z.; Li, T.; Demir, AbdullahSemiconductor lasers with high power conversion efficiency (PCE) and output power are heavily investigated driven by more energy-efficient commercial applications. In this paper, an asymmetric broad area laser (A-BAL) design is studied and compared with a conventional symmetric broad area laser (S-BAL) design for 808 nm single emitter laser diodes. We present a comparative theoretical and experimental investigation by studying the thermal effects on the laser parameters. The output characteristics and efficiency loss paths for the designs were analyzed. The leakage of carriers was identified as the primary source of the PCE reduction with temperature. Suppressing this leakage by optimization of the A-BAL design, a record continuous-wave PCE of 68% at 25 °C and 60.4% at 75 °C were achieved for a single emitter laser with 10 W output power. These devices deliver high efficiency at high temperatures with reliable operation achieving 2000 h of an accelerated aging lifetime without failures.Item Open Access Controlled growth and characterization of epitaxially-laterally-overgrown InGaN/GaN quantum heterostructures(IEEE, 2010) Sarı, Emre; Akyuz, Özgün; Choi, E. -G.; Lee I.-H.; Baek J.H.; Demir, Hilmi VolkanCrystal material quality is fundamentally important for optoelectronic devices including laser diodes and light emitting diodes. To this end epitaxial lateral overgrowth (ELO) has proven to be a powerful technique for reducing dislocation density in GaN and its alloys [1,2]. Implementation and design of ELO process is, however, critical for obtaining high-quality material with high-efficiency quantum structures for light emitters [3]. ©2010 IEEE.Item Open Access Epitaxially-stacked high efficiency laser diodes near 905 nm(Institute of Electrical and Electronics Engineers Inc., 2022-12-01) Zhao, Yuliang; Yang, Guowen; Zhao, Yongming; Tang, Song; Lan, Yu; Liu, Yuxian; Wang, Zhenfu; Demir, AbdullahWe report on studying tunnel junctions and an optical cavity structure for developing epitaxially-stacked high-efficiency 905 nm high-power laser diodes. The GaAs tunnel junctions were explored via simulations and experiments to realize a high peak current density of 7.7 × 104 A/cm2 and a low specific resistance of 1.5 × 10-5 Ωcm2 with a high n-doping concentration of 6 × 1019 cm-3. Employing a low-loss epitaxial structure design, single-, double-, and triple-cavity structure laser diodes demonstrated power scaling by epitaxial stacking. Triple-cavity laser diodes have a low optical loss (0.42 cm-1) and generate a peak power of 83 W with a short cavity length of 750 μm at a limited current of 30 A. © 2009-2012 IEEE.Item Open Access High efficiency 35 GHz MMICs based on 0.2 μm AlGaN/GaN HEMT technology(Cambridge University Press, 2022-06-16) Akoğlu, Büşra Çankaya; Sütbaş, Batuhan; Özbay, EkmelIn this paper, two high efficiency monolithic microwave integrated circuits (MMICs) are demonstrated using NANOTAM's in-house Ka-band fabrication technology. AlGaN/GaN HEMTs with 0.2 μm gate lengths are characterized, and an output power density of 2.9 W/mm is achieved at 35 GHz. A three-stage driver amplifier MMIC is designed, which has a measured gain higher than 19.3 dB across the frequency band of 33–36 GHz. The driver amplifier exhibits 31.9 dB output power and 26.5% power-added efficiency (PAE) at 35 GHz using 20 V supply voltage with 30% duty cycle. Another two-stage MMIC is realized as a power amplifier with a total output gate periphery of 1.8 mm. The output power and PAE of the power amplifier are measured as 3.91 W and 26.3%, respectively, at 35 GHz using 20 V supply voltage with 30% duty cycle. The high efficiency MMICs presented in this paper exhibit the capabilities of NANOTAM's 0.2 μm AlGaN/GaN on SiC technology.Item Open Access High efficiency monolithic photodetectors for integrated optoelectronics in the near infrared(IEEE, 2009) Okyay, Ali Kemal; Onbaşlı, M. Cengiz; Ercan, Burcu; Yu H.-Y.; Ren, S.; Miller, D.A.B.; Saraswat, K.C.; Nayfeh, A.M.Monolithic Germanium photodetectors integrated on Si with external efficiency up to 68% at 1550nm and low dark current density 3.2mA/cm2 are demonstrated. The absorption edge red shifted by 47nm corresponding to bandgap energy reduced by 24meV. © 2009 IEEE.Item Open Access High-power operation and lateral divergence angle reduction of broad-area laser diodes at 976 nm(Elsevier, 2021-04-28) Liu, Y.; Yang, G.; Wang, Z.; Li, T.; Tang, S.; Zhao, Y.; Lan, Y.; Demir, AbdullahBroad-area diode lasers with high output power and low lateral divergence angle are highly desired for extensive scientific and industrial applications. Here, we report on the epitaxial design for higher output power and a flared waveguide design for reduced divergence, which leads to high power operation with a low lateral divergence angle. A vertically asymmetric epitaxial structure was employed and optimized for low internal optical loss and high efficiency to realize high output power operation. Using a flared waveguide design, the lateral divergence angle was efficiently reduced by decreasing the number of high-order lateral optical modes significantly. The flared waveguide design introduces a smooth modification of the ridge width along the cavity without deteriorating laser performance. Based on the optimized epitaxial and waveguide design, we scaled the waveguide width to realize high continuous-wave power of 34.5 W at 25 °C. A low lateral divergence angle of 8° and high power conversion efficiency of 60% were achieved at the operating power level of 25 W. The life test data (30 A at 45 °C for 39 units, 0 failures in 1000 h) demonstrated reliable operation illustrating the efficient design for reduced lateral divergence angle and high operating power.