Browsing by Subject "Frequency bands"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item Open Access Classification of multichannel ECoG related to individual finger movements with redundant spatial projections(IEEE, 2011) Onaran, ibrahim; İnce, N. Fırat; Çetin, A. EnisWe tackle the problem of classifying multichannel electrocorticogram (ECoG) related to individual finger movements for a brain machine interface (BMI). For this particular aim we applied a recently developed hierarchical spatial projection framework of neural activity for feature extraction from ECoG. The algorithm extends the binary common spatial patterns algorithm to multiclass problem by constructing a redundant set of spatial projections that are tuned for paired and group-wise discrimination of finger movements. The groupings were constructed by merging the data of adjacent fingers and contrasting them to the rest, such as the first two fingers (thumb and index) vs. the others (middle, ring and little). We applied this framework to the BCI competition IV ECoG data recorded from three subjects. We observed that the maximum classification accuracy was obtained from the gamma frequency band (65200Hz). For this particular frequency range the average classification accuracy over three subjects was 86.3%. These results indicate that the redundant spatial projection framework can be used successfully in decoding finger movements from ECoG for BMI. © 2011 IEEE.Item Open Access The design of a wideband and widebeam piston transducer in a finite closed circular baffle(2008-06-07) Şahin, Z.; Köymen, HayrettinThe design of a high power piezoelectric underwater transducer operating at frequency range 40 kHz-80 kHz with acoustic power capability in excess of 250W is described. The transducer consists of two back-toback elements. Each element is formed by stacked PZT-4 ceramic rings, a matching and a steel backing layer, and placed in a finite rigid circular baffle. We investigate the dependence of bandwidth and beamwidth to the combination of piston and baffle radii, a and b, respectively. With ka of 2.45 (κ is the wave number) at resonance and a b/a ratio of 2, the transducer resonates at 60kHz with 67% bandwidth and has a beamwidth of 60° at each half space. We show that when two transducers are placed at right angles spatially and driven in parallel, we can obtain an omnidirectional beam pattern in the lower frequency band. The beam pattern exhibits two dips in each quadrant at the higher end of the frequency band, which are within 8 dB. We also investigated power handling capability of the transducer from thermal point of view using finite element analysis. The input impedance measurements agree well with the numerical results within the pass band.Item Open Access Design of multi-octave band GaN-HEMT power amplifier(IEEE, 2012) Eren, Gulesin; Şen, Özlem A.; Bölükbaş, Basar; Kurt, Gökhan; Arıcan, Orkun; Cengiz, Ömer; Ünal, Sıla T.K.; Durmuş, Yıldırım; Özbay, EkmelThis paper describes design, fabrication and measurement of 6 GHz - 18 GHz monolithic microwave integrated circuit (MMIC) amplifier. The amplifier is realized as coplanar waveguide (CPW) circuit using 0.3 μm-gate Gallium-Nitride (GaN) HEMT technology. The amplifier has a small signal gain of 7 ± 0.75 dB. The output power at 3dB compression is better than 24 dBm with 16%-19% drain efficiency for the whole 6 GHz-18 GHz frequency band under continuous wave (CW) power. © 2012 IEEE.Item Open Access Dual-frequency division de-multiplexer based on cascaded photonic crystal waveguides(Elsevier, 2012-02-28) Akosman, Ahmet E.; Mutlu, Mehmet; Kurt, H.; Özbay, EkmelA dual-frequency division de-multiplexing mechanism is demonstrated using cascaded photonic crystal waveguides with unequal waveguide widths. The de-multiplexing mechanism is based on the frequency shift of the waveguide bands for the unequal widths of the photonic crystal waveguides. The modulation in the waveguide bands is used for providing frequency selectivity to the system. The slow light regime of the waveguide bands is utilized for extracting the desired frequency bands from a wider photonic crystal waveguide that has a relatively larger group velocity than the main waveguide for the de-multiplexed frequencies. In other words, the wider spatial distribution of the electric fields in the transverse direction of the waveguide for slow light modes is utilized in order to achieve the dropping of the modes to the output channels. The spectral and spatial de-multiplexing features are numerically verified. It can be stated that the presented mechanism can be used to de-multiplex more than two frequency intervals by cascading new photonic crystal waveguides with properly selected widths.Item Open Access EEG sinyallerinde gamma tepkisinin tespiti(IEEE, 2006-04) Tüfekçi, D. İlhan; Karakaş, S.; Arıkan, OrhanIn the detection of the existence of the early gamma response, subjective methods have been used. In this study, an automated gamma detection technique is developed based on the features obtained from the time - frequency representation of the EEG signal in the gamma frequency band. The technique easily discriminates the gamma response existing and non-existing cases for the generated synthetic data. The classification of the technique and that of the expert opinion coincide %77 for real EEG data. © 2006 IEEE.Item Open Access High power K-band GaN on SiC CPW monolithic power amplifier(IEEE, 2014-10) Cengiz, Ömer; Şen, Özlem; Özbay, EkmelThis paper presents a high power amplifier at K-band (20.2-21.2 GHz). The AlGaN/GaN CPW MMIC amplifier is realized with 0.25 μm HEMT process on 2-inch semi-insulating SiC substrate. The amplifier has a small signal gain over 20 dB for Vds=15V and measured output power of over 31 dBm at 20.2 Ghz. PAE of the amplifier is around 22% for desired frequency band. Initial radiation hardness tests indicate a suitable stability of the technology in space. © 2014 European Microwave Association.Item Open Access Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination(American Institute of Physics Inc., 2015) Yurchenko V.B.; Ciydem, M.; Altintas, A.We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED) of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor) that makes light-microwave interaction observable with an ordinary light (no laser) at conventional brightness (like an office lighting) in quasi-optical microwave structures at rather long (centimeter-scale) wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel. © 2015 Author(s).Item Open Access Metamaterial Absorber Based Multifunctional Sensor Application(Institute of Physics Publishing, 2017) Ozer Z.; Mamedov, Amirullah; Özbay, EkmelIn this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes. © Published under licence by IOP Publishing Ltd.Item Open Access Millimeter-wave scale metamaterials(IEEE, 2009-11) Alıcı, Kamil Boratay; Özbay, EkmelWe review two metamaterial configurations, which are operating at the millimeter-wave scale, in terms of design, fabrication, and characterization. We observed both numerically and experimentally at around 100 GHz a narrow frequency band for which the metamaterial was low loss and had a negative index of refraction. We investigated flat and wedge shaped samples to support our characterization results. We analyzed the transmission band with respect to number of layers at the propagation direction and commented on the bulk nature of these metamaterials. Oblique response of the planar sample was also included in this study. Finally, we demonstrate a device, which yields a rather small angular width at the far field radiation pattern, and composed of a horn antenna and flat metamaterial slabs at the propagation direction. ©2009 IEEE.Item Open Access Sabit karasal mikrodalga LOS/NLOS radyo linklerin enterferans analizi(IEEE, 2015-05) Göktaş, Polat; Topcu, Satılmış; Karaşan, Ezhan; Altıntaş, AyhanBu çalışmada, NATO Band 3+ (1350-2690 MHz) ve NATO Band 4 (4400-5000 MHz) frekans bantlarında çalışan sabit karasal mikrodalga LOS (karasal görüş çizgisi)/ NLOS (ufuk ötesi) radyo linkleri için enterferans modellenmesi ele alınmıştır. Sabit karasal noktadan-noktaya haberleşme sistemlerinde enterferansa maruz kalan istasyonlardaki hem açık havadaki hem de yağmurdaki saçılmadan kaynaklanan enterferansın hesaplanması yapılmıştır. Ayrıca, ITU-R P.452 Tavsiyesinde bahsedilen açık havadaki enterferans kaybının hesabındaki enterferans yayılım mekanizmaları incelenmiştir. Enterferansa neden olan verici ve enterferansa maruz kalan alıcı istasyonların koordinat bilgileri, enterferansa neden olan verici ve enterferansa maruz kalan alıcı istasyonların antenlerinin yerden yükseklikleri, anten ayrımcılıgı, ˘ polarizasyon tipi, radyo kırılma indeksi, deniz seviyesinden ortalama kırıcılık, zaman yüzdesi, yığın kategorisi, sayısal arazi yükseklik haritası ve iklimsel veriler gibi enterferans yayılım parametreleri kullanılarak çeşitli mikrodalga radyo linkler için enterferans analizleri yapılmıştır.Item Open Access Theoretical limits on time delay estimation for ultra-wideband cognitive radios(IEEE, 2008-09) Gezici, Sinan; Celebi, H.; Arslan, H.; Poor, H. V.In this paper, theoretical limits on time delay estimation are studied for ultra-wideband (UWB) cognitive radio systems. For a generic UWB spectrum with dispersed bands, the Cramer-Rao lower bound (CRLB) is derived for unknown channel coefficients and carrier-frequency offsets (CFOs). Then, the effects of unknown channel coefficients and CFOs are investigated for linearly and non-linearly modulated training signals by obtaining specific CRLB expressions. It is shown that for linear modulations with a constant envelope, the effects of the unknown parameters can be mitigated. Finally, numerical results, which support the theoretical analysis, are presented. © 2008 IEEE.Item Open Access Three dimensional microfabricated broadband patch and multifunction reconfigurable antennae for 60 GHz applications(IEEE, 2015-04) Hünerli H. V.; Mopidevi, H.; Cağatay, E.; Imbert, M.; Romeu, J.; Jofre, L.; Çetiner, B. A.; Bıyıklı, NecmiIn this paper we present two antenna designs capable of covering the IEEE 802.11ad (WiGig) frequency band (57-66 GHz and 59-66 GHz respectively). The work below reports the design, microfabrication and characterization of a broadband patch antenna along with the design and microfabrication of multifunction reconfigurable antenna (MRA) in its static form excluding active switching. The first design is a patch antenna where the energy is coupled with a conductor-backed (CB) coplanar waveguide (CPW)-fed loop slot, resulting in a broad bandwidth. The feed circuitry along with the loop is formed on a quartz substrate (at 60 GHz), on top of which an SU-8-based three-dimensional (3D) structure with air cavities is microfabricated. The patch metallization is deposited on top of this structure. The second design is a CB CPW-fed loop slot coupled patch antenna with a parasitic layer on top. The feed circuitry along with the loop is formed on a quartz substrate. On top, the patch metallization is patterned on another quartz substrate. The parasitic pixels are deposited on top of these two quartz layers on top of an SU-8 based 3D structure with air cavities. © 2015 EurAAP.Item Open Access A triple-band antenna array for next-generation wireless and satellite-based applications(Cambridge University Press, 2016) Razzaqi, A. A.; Khawaja, B. A.; Ramzan M.; Zafar, M. J.; Nasir, S. A.; Mustaqim, M.; Tarar, M. A.; Tauqeer, T.In this paper, a triple-band 1 × 2 and 1 × 4 microstrip patch antenna array for next-generation wireless and satellite-based applications are presented. The targeted frequency bands are 3.6, 5.2 and 6.7 GHz, respectively. Simple design procedures and optimization techniques are discussed to achieve better antenna performance. The antenna is designed and simulated using Agilent ADS Momentum using FR4 substrate (r = 4.2 and h = 1.66 mm). The main patch of the antenna is designed for 3.6 GHz operation. A hybrid feed technique is used for antenna arrays with quarter-wave transformer-based network to match the impedance from the feed-point to the antenna to 50. The antenna is optimized to resonate at triple-bands by using two symmetrical slits. The single-element triple-band antenna is fabricated and characterized, and a comparison between the simulated and measured antenna is presented. The achieved simulated impedance bandwidths/gains for the 1 × 2 array are 1.67%/7.75, 1.06%/7.7, and 1.65%/9.4 dBi and for 1 × 4 array are 1.67%/10.2, 1.45%/8.2, and 1.05%/10 dBi for 3.6, 5.2, and 6.7 GHz bands, respectively, which are very practical. These antenna arrays can also be used for advanced antenna beam-steering systems. Copyright © Cambridge University Press and the European Microwave Association 2014.Item Open Access A two-level temporal fair scheduler for multi-cell wireless networks(Department of Electrical and Electronics Engineers, 2015) Shahsavari, S.; Akar, N.We propose a two-level scheduler for a frequency reuse-1 multi-cell wireless network satisfying inter-and intra-cell weighted temporal fairness constraints. As opposed to hard partitioning of the entire frequency band to different cell patterns in frequency reuse-M systems (M>1), we propose sharing this band opportunistically in time by these patterns. Through numerical examples, we show notable gains in overall network throughput due to improved multi-user diversity in comparison with a conventional frequency reuse-3 system. © 2012 IEEE.