Browsing by Subject "Embedded chips"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Adaptive compute-phase prediction and thread prioritization to mitigate memory access latency(ACM, 2014-06) Aktürk, İsmail; Öztürk, ÖzcanThe full potential of chip multiprocessors remains unex- ploited due to the thread oblivious memory access sched- ulers used in off-chip main memory controllers. This is especially pronounced in embedded systems due to limita- Tions in memory. We propose an adaptive compute-phase prediction and thread prioritization algorithm for memory access scheduling for embedded chip multiprocessors. The proposed algorithm eficiently categorize threads based on execution characteristics and provides fine-grained priori- Tization that allows to differentiate threads and prioritize their memory access requests accordingly. The threads in compute phase are prioritized among the threads in mem- ory phase. Furthermore, the threads in compute phase are prioritized among themselves based on the potential of mak- ing more progress in their execution. Compared to the prior works First-Ready First-Come First-Serve (FR-FCFS) and Compute-phase Prediction with Writeback-Refresh Overlap (CP-WO), the proposed algorithm reduces the execution time of the generated workloads up to 23.6% and 12.9%, respectively. Copyright 2014 ACM.Item Open Access A heterogeneous memory organization with minimum energy consumption in 3D chip-multiprocessors(IEEE, 2016-05) Asad, Arghavan; Onsori, Salman; Fathy, M.; Jahed-Motlagh, M. R.; Raahemifar, K.Main memories play an important role in overall energy consumption of embedded systems. Using conventional memory technologies in future designs in nanoscale era cause a drastic increase in leakage power consumption and temperature-related problems. Emerging non-volatile memory (NVM) technologies offer many desirable characteristics such as near-zero leakage power, high density and non-volatility. They can significantly mitigate the issue of memory leakage power in future embedded chip-multiprocessor (eCMP) systems. However, they suffer from challenges such as limited write endurance and high write energy consumption which restrict them for adoption in modern memory systems. In this article, we propose a stacked hybrid memory system for 3D chip-multiprocessors to take advantages of both traditional and non-volatile memory technologies. For reaching this target, we present a convex optimization-based model that minimizes the system energy consumption while satisfy endurance constraint in order to design a reliable memory system. Experimental results show that the proposed method improves energy-delay product (EDP) and performance by about 44.8% and 13.8% on average respectively compared with the traditional memory design where single technology is used. © 2016 IEEE.Item Open Access High performance 3D CMP design with stacked hybrid memory architecture in the dark silicon era using a convex optimization model(IEEE, 2016-05) Onsori, Salman; Asad, Arghavan; Raahemifar, K.; Fathy, M.In this article, we present a convex optimization model to design a stacked hybrid memory system to improve performance and reduce energy consumption of the chip-multiprocessor (CMP). Our convex model optimizes numbers and placement of SRAM and STT-RAM memories on the memory layer, and efficiently maps applications/threads on cores in the core layer. Power consumption that is the main challenge in the dark silicon era is represented as a power constraint in this work and it is satisfied by the detailed optimization model in order to design a dark silicon aware 3D CMP. Experimental results show that the proposed architecture considerably improves the energy-delay product (EDP) and performance of the 3D CMP compared to the Baseline memory design. © 2016 IEEE.Item Open Access A high-performance hybrid memory architecture for embedded CMPs using a convex optimization model(IEEE, 2015-11) Onsori, Salman; Asad, Arghavan; Raahemifar, K.; Fathy, M.In this article, we present a convex optimization model to design a stacked hybrid memory system for 3D embedded chip-multiprocessors (eCMP). Our convex model optimizes numbers and placement of SRAM and STT-RAM memories on the memory layer, and maps applications/threads on cores in the core layer effectively. The detailed proposed model satisfies the power constraint which is the main challenge of dark-silicon era. Experimental results show that the proposed architecture considerably improves the energy-delay product (EDP) and performance of the 3D eCMP compared to the Baseline memory design. © 2015 IEEE.Item Open Access Hybrid stacked memory architecture for energy efficient embedded chip-multiprocessors based on compiler directed approach(IEEE, 2015-12) Onsori, Salman; Asad, A.; Öztürk, Özcan; Fathy, M.Energy consumption becomes the most critical limitation on the performance of nowadays embedded system designs. On-chip memories due to major contribution in overall system energy consumption are always significant issue for embedded systems. Using conventional memory technologies in future designs in nano-scale era causes a drastic increase in leakage power consumption and temperature-related problems. Emerging non-volatile memory (NVM) technologies are promising replacement for conventional memory structure in embedded systems due to its attractive characteristics such as near-zero leakage power, high density and non-volatility. Recent advantages of NVM technologies can significantly mitigate the issue of memory leakage power. However, they introduce new challenges such as limited write endurance and high write energy consumption which restrict them for adoption in modern memory systems. In this article, we propose a stacked hybrid memory system to minimize energy consumption for 3D embedded chip-multiprocessors (eCMP). For reaching this target, we present a convex optimization-based model to distribute data blocks between SRAM and NVM banks based on data access pattern derived by compiler. Our compiler-assisted hybrid memory architecture can achieve up to 51.28 times improvement in lifetime. In addition, experimental results show that our proposed method reduce energy consumption by 56% on average compared to the traditional memory design where single technology is used. © 2015 IEEE.Item Open Access OptMem: dark-silicon aware low latency hybrid memory design(IEEE, 2016-01) Onsori, Salman; Asad, Arghavan A; Raahemifar, K.; Fathy, M.In this article, we present a convex optimization model to design a three dimension (3D)stacked hybrid memory system to improve performance in the dark silicon era. Our convex model optimizes numbers and placement of static random access memory (SRAM) and spin-Transfer torque magnetic random-Access memory(STT-RAM) memories on the memory layer to exploit advantages of both technologies. Power consumption that is the main challenge in the dark silicon era is represented as a main constraint in this work and it is satisfied by the detailed optimization model in order to design a dark silicon aware 3D Chip-Multiprocessor (CMP). Experimental results show that the proposed architecture improves the energy consumption and performanceof the 3D CMPabout 25.8% and 12.9% on averagecompared to the Baseline memory design. © 2016 IEEE.