BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Dyes"

Filter results by typing the first few letters
Now showing 1 - 9 of 9
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BODIPY-based reagents
    (American Chemical Society, 2013) Isik, M.; Ozdemir, T.; Turan, I. S.; Kolemen, S.; Akkaya, E. U.
    Judicious design of BODIPY dyes carrying nitroethenyl substituents in conjugation with the BODIPY core yields dyes that respond to biological thiols by both absorbance and emission changes. Incorporation of solubilizing ethyleneglycol units ensures water solubility. The result is bright signaling of biologically relevant thiols in the longer wavelength region of the visible spectrum and in aqueous solutions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Designing BODIPY-based probes for fluorescence imaging of b-amyloid plaques
    (Royal Society of Chemistry, 2014) Sozmen, F.; Kolemen, S.; Kumada, H. O.; Ono, M.; Saji, H.; Akkaya, E. U.
    Styryl-congutated BODIPY dyes which are structurally similar to known Ab peptide binding dyes, were designed and synthesized. The binding is accompanied by a large increase in the emission intensity in all cases, suggesting a high potential for use in the fluorescence imaging of Ab plaques.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effects of perfluorination on thiophene and pyrrole oligomers
    (2010) Salzner, U.
    The effect of perfluorination on thiophene and pyrrole oligomers in neutral, cationic, and anionic states was investigated with density functional theory at the (TD)B3P86-30%/6-31G* level. For the title compounds fluorination leads to planarization. For pyrroles a band gap reduction of 0.58 eV results, as unsubstituted pyrroles are nonplanar and disordered in the solid state. For thiophene the band gap is slightly increased as long thiophene oligomers are almost planar. Ionization energies and electron affinities increase upon fluorination by 0.65 and 0.60 eV for polythiophene and by 0.45 and 0.90 eV for polypyrrole. Conduction band widths increase by 0.5 for polythiophene and by 0.7 eV for polypyrrole. Spectra of charged (doped) forms are almost identical to those of the parent systems. Like parent systems, fluorinated oligomers with chain lengths of more than six rings develop a third UV absorption that increases in strength and decreases in energy upon chain length increase.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV-Visible light radiations
    (Elsevier Ltd, 2016) Mittal, M.; Sharma, M.; Pandey, O. P.
    Undoped and Manganese (Mn) doped zinc oxide (ZnO) (Zn1- xMnxO, x=0.005, 0.01, 0.015 and 0.02) nanoparticles (NPs) capped with (1.0%) Thioglycerol (TG) has been successfully synthesized by co-precipitation method. Optical and morphological studies have been done for photophysical and structural analysis of synthesized materials. The photocatalytic activity of undoped and Mn doped ZnO NPs were investigated by degradation of crystal violet (CV) dye under UV-Visible light radiations. It has been found that Mn (1.0%) doping concentration is optimal for photophysical and photocatalytic properties. When the pH of as synthesized optimum doped ZnO NPs varied from natural pH i.e. from 6.7 to 8.0 and 10.0, the degradation of CV dye increases from 92% to 95% and 98% in 180min respectively. Further on increasing the pH of optimum doped synthesized NPs to 12.0, almost 100% degradation has been achieved in 150min. Optimum doped photocatalyst synthesized at pH-12.0 has also effectively degraded the CV dye solution in acidic and basic medium thus showed its utility in various industries. However, it has been found that 100% of CV dye quickly degraded in 30min when only 1.0% of hydrogen peroxide (H2O2) was introduced along with optimized NPs synthesized at pH-12. Kinetic studies show that the degradation of CV dye follows pseudo first and second-order kinetic law. Further an industrial anionic polyazo Sirius red F3B (SRF3B) dye has been degraded to 100% with optimized NPs synthesized at pH-12.0 in 15min only.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas
    (Optical Society of America, 2010) Mutlugun, E.; Samarskaya, O.; Ozel, T.; Cicek, N.; Gaponik, N.; Eychmuller, A.; Demir, Hilmi Volkan
    We present light harvesting of aqueous colloidal quantum dots to nonradiatively transfer their excitonic excitation energy efficiently to dye molecules in water, without requiring ligand exchange. These as-synthesized CdTe quantum dots that are used as donors to serve as light-harvesting antennas are carefully optimized to match the electronic structure of Rhodamine B molecules used as acceptors for light harvesting in aqueous medium. By varying the acceptor to donor concentration ratio, we measure the light harvesting factor, along with substantial lifetime modifications of these water-soluble quantum dots, from 25.3 ns to 7.2 ns as a result of their energy transfer with efficiency levels up to 86%. Such nonradiative energy transfer mediated light harvesting in aqueous medium holds great promise for future quantum dot multiplexed dye biodetection systems. (C) 2010 Optical Society of America.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption
    (Elsevier, 2017-10) Ranjith, K. S.; Manivel, P.; Rajendrakumar, R. T.; Uyar, Tamer
    We demonstrate the multi-functionality engineering on nanocomposite by combining one dimensional (1D) ZnO nanorod (NR) and two dimensional (2D) reduced graphene oxide (rGO) for efficient water remediation. Nano-engineered ZnO NR-rGO nanocomposites show efficient water remediation in terms of degradation of organic dyes and removal of heavy metal ions. Herein, we report on the fabrication of ZnO NR-rGO nanocomposite via a facile template-free hydrothermal route with an aim to improve the visible photocatalytic efficiency of the ZnO NR based nanocomposites. The structural and morphological features reveal that the rGO sheets are attached on the ZnO NRs and form a hybrid composite assembly. The surface enabled ZnO NR-rGO nanocomposites were used to degrade organic dye molecules (methylene blue (MB), methyl orange (MO) and rhodamine B (RhB)) under visible irradiation and adsorb Cu (II) and Co (II) ions from water through an adsorption process. The nanocomposite containing 7.5 wt% rGO and ZnO NRs shows a 4-fold enhancement in the visible photocatalytic activity and effective removal of Cu (II) and Co (II) ions from aqueous solution respectively. The photocatalytic performance is discussed in detail with respect to interaction between ZnO NRs and rGO sheets, light-harvesting properties of the nanocomposites. The effective experimental adsorption data also fit very well with the pseudo-second-order model which reveals the surface adsorption of metal ions. The results provide insight into a new method utilize for both visible photo degradation and adsorption for the removal of various wastewater pollutants. Construction of hybrid form of nanostructures delivers the effective catalytic properties with tunable functionalities for the water remediation.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nanograined surface shell wall controlled ZnO–ZnS core–shell nanofibers and their shell wall thickness dependent visible photocatalytic properties
    (Royal Society of Chemistry, 2017) Ranjith, K. S.; Senthamizhan A.; Balusamy, B.; Uyar, Tamer
    The core-shell form of ZnO-ZnS based heterostructural nanofibers (NF) has received increased attention for use as a photocatalyst owing to its potential for outstanding performance under visible irradiation. One viable strategy to realize the efficient separation of photoinduced charge carriers in order to improve catalytic efficiency is to design core-shell nanostructures. But the shell wall thickness plays a vital role in effective carrier separation and lowering the recombination rate. A one dimensional (1D) form of shell wall controlled ZnO-ZnS core-shell nanofibers has been successfully prepared via electrospinning followed by a sulfidation process. The ZnS shell wall thickness can be adjusted from 5 to 50 nm with a variation in the sulfidation reaction time between 30 min and 540 min. The results indicate that the surfaces of the ZnO nanofibers were converted to a ZnS shell layer via the sulfidation process, inducing visible absorption behavior. Photoluminescence (PL) spectral analysis indicated that the introduction of a ZnS shell layer improved electron and hole separation efficiency. A strong correlation between effective charge separation and the shell wall thickness aids the catalytic behavior of the nanofiber network and improves its visible responsive nature. The comparative degradation efficiency toward methylene blue (MB) has been studied and the results showed that the ZnO-ZnS nanofibers with a shell wall thickness of ∼20 nm have 9 times higher efficiency than pristine ZnO nanofibers, which was attributed to effective charge separation and the visible response of the heterostructural nanofibers. In addition, they have been shown to have a strong effect on the degradation of Rhodamine B (Rh B) and 4-nitrophenol (4-NP), with promising reusable catalytic efficiency. The shell layer upgraded the nanofiber by acting as a protective layer, thus avoiding the photo-corrosion of ZnO during the catalytic process. A credible mechanism for the charge transfer process and a mechanism for photocatalysis supported by trapping experiments in the ZnO-ZnS heterostructural system for the degradation of an aqueous solution of MB are also explicated. Trapping experiments indicate that h+ and OH are the main active species in the ZnO-ZnS heterostructural catalyst, which do not effectively contribute in a bare ZnO catalytic system. Our work also highlights the stability and recyclability of the core-shell nanostructure photocatalyst and supports its potential for environmental applications. We thus anticipate that our results show broad potential in the photocatalysis domain for the design of a visible light functional and reusable core-shell nanostructured photocatalyst.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Solid-state dye-sensitized solar cells using red and near-IR absorbing bodipy sensitizers
    (2010) Kolemen, S.; Cakmak, Y.; Erten Ela, S.; Altay, Y.; Brendel, J.; Thelakkat, M.; Akkaya, E. U.
    Boron-dipyrrin dyes, through rational design, yield promising new materials. With strong electron-donor functionalities and anchoring groups for attachment to nanocrystalline TiO2, these dyes proved useful as sensitizers in dye-sensitized solar cells. Their applicability in a solid-state electrolyte regime offers additional opportunities for practical applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water
    (Elsevier, 2017-12) Satilmis, B.; Budd, P. M.; Uyar, Tamer
    In this study, the Polymer of Intrinsic Microporosity (PIM-1) was systematically hydrolyzed in the presence of sodium hydroxide by varying the concentration of base, washing procedure and the time of the reaction. The chemical structure analyses confirmed that PIM-1 could be hydrolyzed by 65% up to 99% conversion depending on the synthesis procedure. The hydrolyzed PIM-1 samples have shown improved solubility which facilitates the fabrication of hydrolyzed PIM-1 ultrafine fibers by electrospinning technique. Extensive optimization studies were performed for the electrospinning of uniform and bead-free fibers from hydrolyzed PIM-1 with different degree of hydrolysis (65%, 86%, 94% and 99%). The electrospun hydrolysed PIM-1 fibrous samples have average fiber diameters (AFD) ranging from 0.58 ± 0.15 μm to 1.21 ± 0.15 μm, depending on the polymer concentration and applied electrospinning parameters. After electrospinning, self-standing hydrolyzed PIM-1 fibrous membranes were obtained which is useful as a filtering material for the adsorption of organic dyes from wastewater. Here, the capability of hydrolyzed PIM-1 electrospun fibrous membranes for the removal of dyes from aqueous solutions was investigated by using a batch adsorption process. The maximum adsorption capacity of fully hydrolyzed PIM-1 fibers was found 157 ± 16 mg g− 1 for Methylene Blue and 4 mg g− 1 for Congo red when the adsorption was conducted by 20 mg L− 1 dye solution without using any dilution. Moreover, maximum dye adsorption was also studied by using concentrated Methylene Blue solutions showing up to 272 mg g− 1 adsorption maximum. In addition, the self-standing fibrous hydrolyzed PIM-1 membrane was employed to separate Methylene Blue from an aqueous system by filtration without the necessity of additional driving force. The results indicate that hydrolyzed PIM-1 electrospun nanofibrous membranes can be a promising filtering material for wastewater treatment

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback