Effects of perfluorination on thiophene and pyrrole oligomers
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The effect of perfluorination on thiophene and pyrrole oligomers in neutral, cationic, and anionic states was investigated with density functional theory at the (TD)B3P86-30%/6-31G* level. For the title compounds fluorination leads to planarization. For pyrroles a band gap reduction of 0.58 eV results, as unsubstituted pyrroles are nonplanar and disordered in the solid state. For thiophene the band gap is slightly increased as long thiophene oligomers are almost planar. Ionization energies and electron affinities increase upon fluorination by 0.65 and 0.60 eV for polythiophene and by 0.45 and 0.90 eV for polypyrrole. Conduction band widths increase by 0.5 for polythiophene and by 0.7 eV for polypyrrole. Spectra of charged (doped) forms are almost identical to those of the parent systems. Like parent systems, fluorinated oligomers with chain lengths of more than six rings develop a third UV absorption that increases in strength and decreases in energy upon chain length increase.