Browsing by Subject "Differential equations"
Now showing 1 - 20 of 26
- Results Per Page
- Sort Options
Item Open Access Animation of deformable models(Pergamon Press, 1994) Güdükbay, Uğur; Özgüç, B.Although kinematic modelling methods are adequate for describing the shapes of static objects, they are insufficient when it comes to producing realistic animation. Physically based modelling remedies this problem by including forces, masses, strain energies and other physical quantities. The paper describes a system for the animation of deformable models. The system uses physically based modelling methods and approaches from elasticity theory for animating the models. Two different formulations, namely the primal formulation and the hybrid formulation, are implemented so that the user can select the one most suitable for an animation depending on the rigidity of the models. Collision of the models with impenetrable obstacles and constraining of the model points to fixed positions in space are implemented for use in the animations. © 1994.Item Open Access Closed-form green's function representations for mutual coupling calculations between apertures on a perfect electric conductor circular cylinder covered with dielectric layers(IEEE, 2011-06-07) Akyüz, M. S.; Ertürk, V. B.; Kalfa, M.Closed-form Green's function (CFGF) representations are developed for tangential magnetic current sources to calculate the mutual coupling between apertures on perfectly conducting circular cylinders covered with dielectric layers. The new representations are obtained by first rewriting the corresponding spectral domain Green's function representations in a different form (so that accurate results for electrically large cylinders, and along the axial line of a cylinder can be obtained). Then, the summation over the cylindrical eigenmodes is calculated efficiently. Finally, the resulting expressions are transformed to the spatial domain using a modified two-level generalized pencil of function method. Numerical results are presented showing good agreement when compared to CST Microwave Studio results.Item Open Access Comment on "modeling the electrical conduction in DNA nanowires: Charge transfer and lattice fluctuation theories"(American Physical Society, 2016) Panahi, M.; Chitsazanmoghaddam, M.In a recent paper [S. Behnia and S. Fathizadeh, Phys. Rev. E 91, 022719 (2015)10.1103/PhysRevE.91.022719] an analytical approach is proposed for the investigation of the conductivity properties of DNA. The authors use mean Lyapunov exponent methods as the backbone of their approach and try to interpret properties of the system based on its behavior. Their interpretation regarding the change in nature of the mean Lyapunov exponent at the denaturation temperatures and discussions of stability and instability based on the mean Lyapunov exponent method are questioned. Moreover there is misunderstanding between mean Lyapunov exponent and Lyapunov exponent. © 2016 American Physical Society.Item Open Access A communication scheme by using synchronized chaotic systems(IEEE, 1996) Morgül, Ömer; Feki, MoezA method to synchronize systems with chaotic behavior, in a master-slave configuration adapted to communication systems, is discussed. This work is motivated by the need for secure communication. In this method, the synchronization and message transmission phases are separated, and while the synchronization is achieved in the synchronization phases, the message is only sent in the message transmission phases.Item Open Access Comparative evaluation of absorbing boundary conditions using Green's functions for layered media(IEEE, 1995) Aksun, M. İrşadi; Dural, G.Absorbing boundary conditions are comparatively studied using the Green's functions of the vector and scalar potentials for multilayer geometries and general sources. The absorbing boundaries are introduced as additional layers with predefined reflection coefficients into the calculation of the Green's functions. The Green's functions are calculated using different reflection coefficients corresponding to different absorbing boundaries and compared to those obtained with no absorbing boundary. This approach provides an absolute measure of the effectiveness of different absorbing boundaries.Item Open Access Comparative evaluation of absorbing boundary conditions using Green's functions for layered media(Institute of Electrical and Electronics Engineers, 1996-02) Aksun, M. İrşadi; Dural, G.Absorbing boundary conditions are comparatively studied using the Green's functions of the vector and scalar potentials for multilayer geometries and general sources. Since the absorbing boundaries are introduced as additional layers with predefined reflection coefficients into the calculation of the Green's functions, this approach provides an absolute measure of the effectiveness of different absorbing boundaries. The Green's functions are calculated using different reflection coefficients corresponding to different absorbing boundaries and compared to those obtained with no absorbing boundary. It is observed that the perfectly matched layer (PML) is by far the best among the other absorbing boundary conditions whose reflection coefficients are available.Item Open Access Dynamic boundary control of the timoshenko beam(Pergamon Press, 1992) Morgül, Ö.We consider a clamped-free Timoshenko beam. To stabilize the beam vibrations, we propose a dynamic boundary control law applied at the free end of the beam. We prove that with the proposed control law, the beam vibrations uniformly and exponentially decay to zero. The proof uses a Lyapunov functional based on the energy of the system. © 1992.Item Open Access Electrostatic interactions in charged nanoslits within an explicit solvent theory(Institute of Physics Publishing, 2015) Buyukdagli, S.Within a dipolar Poisson-Boltzmann theory including electrostatic correlations, we consider the effect of explicit solvent structure on solvent and ion partition confined to charged nanopores. We develop a relaxation scheme for the solution of this highly non-linear integro-differential equation for the electrostatic potential. The scheme is an extension of the approach previously introduced for simple planes (Buyukdagli and Blossey 2014 J. Chem. Phys. 140 234903) to nanoslit geometry. We show that the reduced dielectric response of solvent molecules at the membrane walls gives rise to an electric field significantly stronger than the field of the classical Poisson-Boltzmann equation. This peculiarity associated with non-local electrostatic interactions results in turn in an interfacial counterion adsorption layer absent in continuum theories. The observation of this enhanced counterion affinity in the very close vicinity of the interface may have important impacts on nanofluidic transport through charged nanopores. Our results indicate the quantitative inaccuracy of solvent implicit nanofiltration theories in predicting the ionic selectivity of membrane nanopores.Item Open Access Fast and accurate analysis of complicated metamaterial structures using a low-frequency multilevel fast multipole algorithm(2009-09) Ergül, Özgür; Gürel, LeventWe present efficient solutions of electromagnetics problems involving realistic metamaterial structures using a low-frequency multilevel fast multipole algorithm (LF-MLFMA). Ordinary implementations of MLFMA based on the diago-nalization of the Green's function suffer from the low-frequency breakdown, and they become inefficient for the solution of metamaterial problems dis-cretized with very small elements compared to the wavelength. We show that LF-MLFMA, which employs multipoles explicitly without diagonalization, significantly improves the solution of metamaterial problems in terms of both processing time and memory. © 2009 IEEE.Item Open Access Fluctuation-dissipation and energy properties of a finite bath(American Physical Society, 2016) Carcaterra, A.; Akay, A.This paper expands a recent proposal by the authors to rederive the Langevin equation for a test particle in a finite-size thermal bath using a perturbation approach that yields a cascade of Langevin-type equations. Such an approach produces a different viewpoint for the fluctuation-dissipation duality by expressing them on similar scales. General properties of energy sharing between the test particle and the bath are outlined, investigating the resonant and nonresonant conditions. © 2016 American Physical Society.Item Open Access Integral equation anlaysis of an arbitrary-profile and varying-resistivity cylindrical reflector illuminated by an E-polarized complex-source-point beam(Optical Society of America, 2009-06-09) Oguzer, T.; Altintas, A.; Nosich, A. I.A two-dimensional reflector with resistive-type boundary conditions and varying resistivity is considered. The incident wave is a beam emitted by a complex-source-point feed simulating an aperture source. The problem is formulated as an electromagnetic time-harmonic boundary value problem and cast into the electric field integral equation form. This is a Fredholm second kind equation that can be solved numerically in several ways. We develop a Galerkin projection scheme with entire-domain expansion functions defined on an auxiliary circle and demonstrate its advantage over a conventional moment-method solution in terms of faster convergence. Hence, larger reflectors can be computed with a higher accuracy. The results presented relate to the elliptic, parabolic, and hyperbolic profile reflectors fed by in-focus feeds. They demonstrate that a partially or fully resistive parabolic reflector is able to form a sharp main beam of the far-field pattern in the forward half-space; however, partial transparency leads to a drop in the overall directivity of emission due to the leakage of the field to the shadow half-space. This can be avoided if only small parts of the reflector near the edges are made resistive, with resisitivity increasing to the edge.Item Open Access Integrated asymmetric vertical coupler pressure sensors(SPIE, 2004) Kıyat, İsa; Kocabaş, Aşkın; Akçağ, İmran; Aydınlı, AtillaDesign and analysis of a novel pressure sensor based on a silicon-on-insulator asymmetric integrated vertical coupler is presented. The coupler is composed of a single mode low index waveguide and a thin silicon slab. Wavelength selective optical modulation of asymmetric vertical coupler is examined in detail. Its potential for sensing applications is highlighted as an integrated optical pressure sensor which can be realized by standard silicon micro-fabrication. Sensitivity of transmission of such couplers on refractive index change of silicon slab ensures that they are good candidates for applications requiring high sensitivities.Item Open Access Markov modulated periodic arrival process offered to an ATM multiplexer(IEEE, 1993-11-12) Akar, Nail; Arıkan, ErdalWhen a superposition of on/off sources is offered to a deterministic server, a particular queueing system arises whose analysis has a significant role in ATM based networks. Periodic cell generation during active times is a major feature of these sources. In this paper a new analytical method is provided to solve for this queueing system via an approximation to the transient behavior of the nD/D/1 queue. The solution to the queue length distribution is given in terms of a solution to a linear differential equation with variable coefficients. The technique proposed here has close similarities with the fluid flow approximations and is amenable to extension for more complicated queueing systems with such correlated arrival processes. A numerical example for a packetized voice multiplexer is finally given to demonstrate our results.Item Open Access Markov modulated periodic arrival process offered to an ATM multiplexer(Elsevier BV * North-Holland, 1995-04) Akar, N.; Arıkan, E.When a superposition of on/off sources is offered to a deterministic server, we are faced with a particular queueing system, the analysis of which has a significant role in ATM networks. Periodic cell generation during active times is a major feature of these sources. We provide an analytical approach to solve for this queueing system via an approximation to the transient behavior of the nD/D/1 queue. The solution to the queue length distribution is given in terms of a solution to a linear differential equation with variable coefficients. The technique proposed here has close similarities with the fluid flow approximation and is amenable to extension for more complicated queueing systems with such correlated arrival processes. A numerical example for a packetized voice multiplexer is finally given to demonstrate our results.Item Open Access A novel technique for a linear system of equations applied to channel equalization(IEEE, 2009) Pilancı, Mert; Arıkan, Orhan; Oǧuz, B.; Pınar, Mustafa Ç.In many inverse problems of signal processing the problem reduces to a linear system of equations. Accurate and robust estimation of the solution with errors in both measurement vector and coefficient matrix is a challenging task. In this paper a novel formulation is proposed which takes into account the structure (e.g. Toeplitz, Hankel) and uncertainties of the system. A numerical algorithm is provided to obtain the solution. The proposed technique and other methods are compared in a channel equalization example which is a fundamental necessity in communication.Item Open Access Numerical modeling of electromagnetic scattering by perfectly conducting surfaces of revolution(IEEE, 2008-06-07) Nechitaylo, S.; Sukharevsky, I.; Altıntaş, Ayhan; Sukharevsky, O.The integro-differential equation (IDE) of a three-dimensional (3-D) electromagnetic excitation problem of unclosed surfaces is numerically treated by means of the novel direct solver. © 2008 IEEE.Item Open Access Numerical simulation of optically trapped particles(SPIE, 2014) Volpe, G.; Volpe, GiovanniSome randomness is present in most phenomena, ranging from biomolecules and nanodevices to financial markets and human organizations. However, it is not easy to gain an intuitive understanding of such stochastic phenomena, because their modeling requires advanced mathematical tools, such as sigma algebras, the Itô formula and martingales. Here, we discuss a simple finite difference algorithm that can be used to gain understanding of such complex physical phenomena. In particular, we simulate the motion of an optically trapped particle that is typically used as a model system in statistical physics and has a wide range of applications in physics and biophysics, for example, to measure nanoscopic forces and torques.Item Open Access On switching H ∞ controllers for a class of LPV systems(IEEE, 2003) Yan, P.; Özbay, HitayWe consider switching H ∞ controllers for a class of LPV systems scheduled along a measurable parameter trajectory. The candidate controllers are selected from a given controller set according to the switching rules based on the scheduling variable. We provide sufficient conditions to guarantee the stability of the switching LPV systems in terms of the dwell time and the average dwell time. Our results are illustrated with an example, where switching between two robust controllers is performed for an LPV system.Item Open Access On the design of AQM supporting TCP flows using robust control theory(IEEE, 2004) Quet, P-F.; Özbay, HitayRecently it has been shown that the active queue management schemes implemented in the routers of communication networks supporting transmission control protocol (TCP) flows can be modeled as a feedback control system. Based on a delay differential equations model of TCPs congestion-avoidance mode different control schemes have been proposed. Here a robust controller is designed based on the known techniques for H∞ control of systems with time delays.Item Open Access On the design of AQM supporting TCP flows using robust control theory(IEEE, 2003) Quet, P. F.; Özbay, HitayRecently it has been shown that the AQM (Active Queue Management) schemes implemented in the routers of communication networks supporting TCP (Transmission Control Protocol) flows can be modeled as a feedback control system. Based on a delay differential equations model of TCP's congestion-avoidance mode different control schemes have been proposed. Here a robust controller is designed based on the known techniques for ℋ ∞ control of systems with time delays.