Browsing by Subject "Devices"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance(Royal Society of Chemistry, 2011) Jiao, Z.; Wang, X.; Wang, J.; Ke, L.; Demir, Hilmi Volkan; Koh, T. W.; Sun, X. W.Plate-like hydrated tungsten trioxide (3WO(3)center dot H(2)O) films were grown on a fluorine doped tin oxide (FTO) coated transparent conductive substrate via an efficient, facile and template-free hydrothermal method. The film exhibited a fast coloration/bleaching response (t(c90%) = 4.3 s and t(b90%) = 1.4 s) and a high coloration efficiency (112.7 cm(2) C(-1)), which were probably due to a large surface area.Item Open Access Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence(AIP Publishing, 2006) Yerli, S.; Serincan, U.; Dogan, I.; Tokay, S.; Genisel, M.; Aydınlı, Atilla; Turan, R.Silicon nanocrystals, average sizes ranging between 3 and 7 nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800 degrees C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. While the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.Item Open Access Implantable microelectromechanical sensors for diagnostic monitoring and post-surgical prediction of bone fracture healing(John Wiley and Sons Inc., 2015) McGilvray, K. C.; Ünal, E.; Troyer, K. L.; Santoni, B. G.; Palmer, R. H.; Easley, J. T.; Demir, Hilmi Volkan; Puttlitz, C. M.The relationship between modern clinical diagnostic data, such as from radiographs or computed tomography, and the temporal biomechanical integrity of bone fracture healing has not been well-established. A diagnostic tool that could quantitatively describe the biomechanical stability of the fracture site in order to predict the course of healing would represent a paradigm shift in the way fracture healing is evaluated. This paper describes the development and evaluation of a wireless, biocompatible, implantable, microelectromechanical system (bioMEMS) sensor, and its implementation in a large animal (ovine) model, that utilized both normal and delayed healing variants. The in vivo data indicated that the bioMEMS sensor was capable of detecting statistically significant differences (p-value <0.04) between the two fracture healing groups as early as 21 days post-fracture. In addition, post-sacrifice micro-computed tomography, and histology data demonstrated that the two model variants represented significantly different fracture healing outcomes, providing explicit supporting evidence that the sensor has the ability to predict differential healing cascades. These data verify that the bioMEMS sensor can be used as a diagnostic tool for detecting the in vivo course of fracture healing in the acute post-treatment period. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.Item Open Access Light extraction efficiency enhancement of colloidal quantum dot light-emitting diodes using large-scale nanopillar arrays(Wiley-VCH Verlag, 2014) Yang, X.; Dev, K.; Wang, J.; Mutlugun, E.; Dang, C.; Zhao Y.; Liu, S.; Tang, Y.; Tan S.T.; Sun, X. W.; Demir, Hilmi VolkanA colloidal quantum dot light-emitting diode (QLED) is reported with substantially enhanced light extraction efficiency by applying a layer of large-scale, low-cost, periodic nanopillar arrays. Zinc oxide nanopillars are grown on the glass surface of the substrate using a simple, efficient method of non-wetting templates. With the layer of ZnO nanopillar array as an optical outcoupling medium, a record high current efficiency (CE) of 26.6 cd/A is achieved for QLEDs. Consequently, the corresponding external quantum efficiency (EQE) of 9.34% reaches the highest EQE value for green-emitting QLEDs. Also, the underlying physical mechanisms enabling the enhanced light-extraction are investigated, which leads to an excellent agreement of the numerical results based on the mode theory with the experimental measurements. This study is the first account for QLEDs offering detailed insight into the light extraction efficiency enhancement of QLED devices. The method demonstrated here is intended to be useful not only for opening up a ubiquitous strategy for designing high-performance QLEDs but also with respect to fundamental research on the light extraction in QLEDs.Item Open Access Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics(Optical Society of America, 2014) Nirmal, A.; Kyaw, A. K. K.; Sun, X. W.; Demir, Hilmi VolkanMicrostructured porous zinc oxide (ZnO) thin film was developed and demonstrated as an electron selective layer for enhancing light scattering and efficiency in inverted organic photovoltaics. High degree of porosity was induced and controlled in the ZnO layer by incorporation of polyethylene glycol (PEG) organic template. Scanning electron microscopy, contact angle and absorption measurements prove that the ZnO: PEG ratio of 4:1 is optimal for the best performance of porous ZnO. Ensuring sufficient pore-filling, the use of porous ZnO leads to a marked improvement in device performance compared to non-porous ZnO, with 35% increase in current density and 30% increase in efficiency. Haze factor studies indicate that the performance improvement can be primarily attributed to the improved light scattering enabled by such a highly porous structure. (C) 2014 Optical Society of AmericaItem Open Access Morphology-tailored synthesis of tungsten trioxide (Hydrate) thin films and their photocatalytic properties(ACS Publications, 2011-01-10) Jiao, Z. H.; Wang, J. M.; Ke, L.; Sun, X. W.; Demir, Hilmi VolkanTungsten trioxide hydrate (3WO(3)center dot H(2)O) films with different morphologies were directly grown on fluorine doped tin oxide (FTO) subsi:rate via a facile crystal-seed-assisted hydrothermal method. Scanning electron microscopy (SEM) analysis showed that 3WO(3)center dot H(2)O thin films composed of platelike, wedgelike, and sheetlike nanostructures could be selectively synthesized by adding Na(2)SO(4), (NH(4))(2)SO(4), and CH(3)COONH(4) as capping agents, respectively. X-ray diffraction (XRD) studies indicated that these films were of orthorhombic structure. The as-prepared thin films after dehydration showed obvious photcicatalytic activities. The best film grown using CH(3)COONH(4) as a capping agent generated anodic photocurrents of 1.16 mA/cm(2) fork oxidization of methanol and 0.5 mA/cm(2) for water splitting with the highest photoconversion efficiency of about 0.3% under simulated solar illumination.Item Open Access On the triplet distribution and its effect on an improved phosphorescent organic light-emitting diode(AIP Publishing, 2012-08-28) Liu, S. W.; Divayana, Y.; Abiyasa, A. P.; Tan S.T.; Demir, Hilmi Volkan; Sun, X. W.We reported phosphorescent organic light-emitting diodes with internal quantum efficiency near 100% with significantly reduced efficiency roll-off. It was found that the use of different hole transporting layer (HTL) affects the exciton distribution in the emission region significantly. Our best device reaches external quantum efficiency (EQE), current, and power efficiency of 22.8% +/- 0.1%, 78.6 +/- 0.2 cd/A, 85 +/- 2 lm/W, respectively, with half current of 158.2 mA/cm(2). This considerably outperforms the control device with N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) (HTL) and 4,4'-N,N'-dicarbazole-biphenyl (host) with maximum EQE, current and power efficiency of 19.1% +/- 0.1%, 65.6 +/- 0.3 cd/A, 67 +/- 2 lm/W, respectively, with half current of only 8.1 mA/cm(2).Item Open Access Plasmonic light-sensitive skins of nanocrystal monolayers(IOP Publishing, 2013) Akhavan, S.; Gungor, K.; Mutlugun, E.; Demir, Hilmi VolkanWe report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.Item Open Access Resistive Switching based electro-optical modulation(Wiley, 2014-09-08) Battal, E.; Ozcan, A.; Okyay, Ali KemalResistive switching enables optical modulation via atomic scale modifications that induce change in the refractive index of active device materials. The formation of filaments and migration of atoms around these filaments between high resistance and low resistance states results in the modulation of the free carrier concentration and, hence, the optical constants of the material.Item Open Access Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC(AIP Publishing, 2014) Ciuk, T.; Cakmakyapan, S.; Özbay, Ekmel; Caban, P.; Grodecki, K.; Krajewska, A.; Pasternak, I.; Szmidt, J.; Strupinski, W.The transport properties of quasi-free-standing (QFS) bilayer graphene on SiC depend on a range of scattering mechanisms. Most of them are isotropic in nature. However, the SiC substrate morphology marked by a distinctive pattern of the terraces gives rise to an anisotropy in graphene's sheet resistance, which may be considered an additional scattering mechanism. At a technological level, the growth-preceding in situ etching of the SiC surface promotes step bunching which results in macro steps similar to 10 nm in height. In this report, we study the qualitative and quantitative effects of SiC steps edges on the resistance of epitaxial graphene grown by chemical vapor deposition. We experimentally determine the value of step edge resistivity in hydrogen-intercalated QFS-bilayer graphene to be similar to 190 Omega mu m for step height h(S) = 10 nm and provide proof that it cannot originate from mechanical deformation of graphene but is likely to arise from lowered carrier concentration in the step area. Our results are confronted with the previously reported values of the step edge resistivity in monolayer graphene over SiC atomic steps. In our analysis, we focus on large-scale, statistical properties to foster the scalable technology of industrial graphene for electronics and sensor applications. (C) 2014 AIP Publishing LLC.Item Open Access Superenhancers: Novel opportunities for nanowire optoelectronics(Nature Publishing Group, 2014) Khudiyev, T.; Bayındır, MehmetNanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practical applicability, and more efficient materials cannot find widespread usage in these designs due to their rarity and cost. Here we suggest a novel and versatile nanoconcentrator scheme utilizing unique optical features of non-resonant Mie (NRM) scattering regime associated with low-index structures. The scattering regime is highly compatible with resonant Mie absorption effect taking place in nanowire absorbers. This technique in its optimized forms can provide up to 1500% total absorption enhancement, 400-fold material save and is suitable for large-area applications with significant area preservation compared to thin-film of same materials. Proposed superenhancer concept with its exceptional features such as broadband absorption enhancement, polarization immunity and material-independent manner paves the way for development of efficient nanowire photosensors or solar thermophotovoltaic devices and presents novel design opportunities for self-powered nanosystems.Item Open Access Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2(Springer Verlag, 2016-02) Senthamizhan A.; Balusamy, B.; Aytac Z.; Uyar, TamerWe report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness.Item Open Access Visible photoluminescence from planar amorphous silicon nitride microcavities(Optical Society of America, 1998) Serpengüzel, A.; Aydınlı, Atilla; Bek, A.; Güre, M.Fabry-Perot microcavities were used for the enhancement and inhibition of photoluminescence (PL) in a hydrogenated amorphous silicon nitride (a-SiNx:H) microcavity fabricated with and without ammonia. A planar microcavity was realized that included a metallic back mirror and an a-SiNx:H-air or a metallic front mirror. The PL extends from the red part of the spectrum to the near infrared for the samples grown without ammonia. The PL is in the blue-green part of the spectrum for the samples grown with ammonia. The PL amplitude is enhanced and the PL linewidth is reduced with respect to those in bulk a-SiNx:H. The numerically calculated transmittance, reflectance, and absorbance spectra agree well with the experimentally measured spectra. (C) 1998 Optical Society of America [S0740-3224(98)00211-2] OCIS codes: 230.5750, 250.5230, 310.0310.