Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence

Date

2006

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
24
downloads

Citation Stats

Series

Abstract

Silicon nanocrystals, average sizes ranging between 3 and 7 nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800 degrees C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. While the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.

Source Title

Journal of Applied Physics

Publisher

AIP Publishing

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English