Browsing by Subject "Charge trapping"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access 2-nm laser-synthesized Si nanoparticles for low-power charge trapping memory devices(IEEE, 2014-08) El-Atab, N.; Özcan, Ayşe; Alkış, Sabri; Okyay, Ali Kemal; Nayfeh, A.In this work, the effect of embedding Silicon Nanoparticles (Si-NPs) in ZnO based charge trapping memory devices is studied. Si-NPs are fabricated by laser ablation of a silicon wafer in deionized water followed by sonication and filtration. The active layer of the memory was deposited by Atomic Layer Deposition (ALD) and spin coating technique was used to deliver the Si-NPs across the sample. The nanoparticles provided a good retention of charges (>10 years) in the memory cells and allowed for a large threshold voltage (Vt) shift (3.4 V) at reduced programming voltages (1 V). The addition of ZnO to the charge trapping media enhanced the electric field across the tunnel oxide and allowed for larger memory window at lower operating voltages. © 2014 IEEE.Item Open Access Charge Trapping Memory with 2.85-nm Si-Nanoparticles Embedded in HfO2(ECS, 2015-05) El-Atab, N.; Turgut, Berk Berkan; Okyay, Ali Kemal; Nayfeh, A.In this work, the effect of embedding 2.85-nm Si-nanoparticles charge trapping layer in between double layers of high-κ Al2O3/HfO2 oxides is studied. Using high frequency (1 MHz) C-Vgate measurements, the memory showed a large memory window at low program/erase voltages due to the charging of the Si-nanoparticles. The analysis of the C-V characteristics shows that mixed charges are being stored in the Si-nanoparticles where electrons get stored during the program operation while holes dominate in the Si-nanoparticles during the erase operation. Moreover, the retention characteristic of the memory is studied by measuring the memory hysteresis in time. The obtained retention characteristic (35.5% charge loss in 10 years) is due to the large conduction and valence band offsets between the Si-nanoparticles and the Al2O3/HfO2 tunnel oxide. The results show that band engineering is essential in future low-power non-volatile memory devices. In addition, the results show that Si-nanoparticles are promising in memory applications.Item Open Access Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices(Institute of Physics Publishing Ltd., 2017) El-Atab, N.; Ulusoy, T. G.; Ghobadi, A.; Suh, J.; Islam, R.; Okyay, Ali Kemal; Saraswat, K.; Nayfeh, A.The manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ ∼ 35) than the amorphous phase case (κ ∼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the Al2O3/ZrO2/Al2O3 system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO2 nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics.Item Open Access Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide(Springer New York LLC, 2015) El-Atab, N.; Turgut, B. B.; Okyay, Ali Kemal; Nayfeh, M.; Nayfeh, A.In this work, we demonstrate a non-volatile metal-oxide semiconductor (MOS) memory with Quattro-layer graphene nanoplatelets as charge storage layer with asymmetric Al2O3/HfO2 tunnel oxide and we compare it to the same memory structure with 2.85-nm Si nanoparticles charge trapping layer. The results show that graphene nanoplatelets with Al2O3/HfO2 tunnel oxide allow for larger memory windows at the same operating voltages, enhanced retention, and endurance characteristics. The measurements are further confirmed by plotting the energy band diagram of the structures, calculating the quantum tunneling probabilities, and analyzing the charge transport mechanism. Also, the required program time of the memory with ultra-thin asymmetric Al2O3/HfO2 tunnel oxide with graphene nanoplatelets storage layer is calculated under Fowler-Nordheim tunneling regime and found to be 4.1 ns making it the fastest fully programmed MOS memory due to the observed pure electrons storage in the graphene nanoplatelets. With Si nanoparticles, however, the program time is larger due to the mixed charge storage. The results confirm that band-engineering of both tunnel oxide and charge trapping layer is required to enhance the current non-volatile memory characteristics.Item Open Access Graphene Nanoplatelets Embedded in HfO2 for MOS Memory(Electrochemical Society Inc., 2015) El-Atab, N.; Turgut, Berk Berkan; Okyay, Ali Kemal; Nayfeh, A.In this work, a MOS memory with graphene nanoplatelets charge trapping layer and a double layer high-κ Al2O3/HfO2 tunnel oxide is demonstrated. Using C-Vgate measurements, the memory showed a large memory window at low program/erase voltages. The analysis of the C-V characteristics shows that electrons are being stored in the graphene-nanoplatelets during the program operation. In addition, the retention characteristic of the memory is studied by plotting the hysteresis measurement vs. time. The measured excellent retention characteristic (28.8% charge loss in 10 years) is due to the large electron affinity of the graphene. The analysis of the plot of the energy band diagram of the MOS structure further proves its good retention characteristic. Finally, the results show that such graphene nanoplatelets are promising in future low-power non-volatile memory devices.Item Open Access Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission(2014) El-Atab, N.; Ozcan, A.; Alkis, S.; Okyay, Ali Kemal; Nayfeh, A.A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2 nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (ΔVt) vs. programming voltage is studied with and without the silicon nanoparticles. Applying -1 V for 5 s at the gate of the memory with nanoparticles results in a ΔVt of 3.4 V, and the memory window can be up to 8 V with an excellent retention characteristic (>10 yr). Without nanoparticles, at -1 V programming voltage, the ΔVt is negligible. In order to get ΔVt of 3.4 V without nanoparticles, programming voltage in excess of 10 V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1 V the electric field across the 3.6 nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ΔVt vs. electric field across the tunnel oxide shows square root dependence at low fields (E 1 MV/cm) and a square dependence at higher fields (E > 2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields. © 2014 AIP Publishing LLC.Item Open Access Memory effect by charging of ultra‐small 2‐nm laser‐synthesized solution processable Si‐nanoparticles embedded in Si–Al2O3–SiO2 structure(Wiley-VCH Verlag, 2015) El-Atab, N.; Rizk, A.; Tekcan, B.; Alkis, S.; Okyay, Ali Kemal; Nayfeh, A.A memory structure containing ultra-small 2-nm laser-synthesized silicon nanoparticles is demonstrated. The Si-nanoparticles are embedded between an atomic layer deposited high-κ dielectric Al2O3 layer and a sputtered SiO2 layer. A memory effect due to charging of the Si nanoparticles is observed using high frequency C-V measurements. The shift of the threshold voltage obtained from the hysteresis measurements is around 3.3V at 10/-10V gate voltage sweeping. The analysis of the energy band diagram of the memory structure and the negative shift of the programmed C-V curve indicate that holes are tunneling from p-type Si via Fowler-Nordheim tunneling and are being trapped in the Si nanoparticles. In addition, the structures show good endurance characteristic (>105program/erase cycles) and long retention time (>10 years), which make them promising for applications in non-volatile memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Silicon nanoparticle charge trapping memory cell(Wiley-VCH Verlag, 2014) El-Atab, N.; Ozcan, A.; Alkis, S.; Okyay, Ali Kemal; Nayfeh, A.A charge trapping memory with 2 nm silicon nanoparticles (Si NPs) is demonstrated. A zinc oxide (ZnO) active layer is deposited by atomic layer deposition (ALD), preceded by Al2O3 which acts as the gate, blocking and tunneling oxide. Spin coating technique is used to deposit Si NPs across the sample between Al2O3 steps. The Si nanoparticle memory exhibits a threshold voltage (Vt) shift of 2.9 V at a negative programming voltage of -10 V indicating that holes are emitted from channel to charge trapping layer. The negligible measured Vt shift without the nanoparticles and the good re- tention of charges (>10 years) with Si NPs confirm that the Si NPs act as deep energy states within the bandgap of the Al2O3 layer. In order to determine the mechanism for hole emission, we study the effect of the electric field across the tunnel oxide on the magnitude and trend of the Vt shift. The Vt shift is only achieved at electric fields above 1 MV/cm. This high field indicates that tunneling is the main mechanism. More specifically, phonon-assisted tunneling (PAT) dominates at electric fields between 1.2 MV/cm < E < 2.1 MV/cm, while Fowler-Nordheim tunneling leads at higher fields (E > 2.1 MV/cm). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access ZnO based charge trapping memory with embedded nanoparticles(IEEE, 2012) Rizk, A.; Oruç, Feyza B.; Okyay, Ali Kemal; Nayfeh, A.A thin film ZnO charge trapping memory cell with embedded nanoparticles is demonstrated by Physics Based TCAD simulation. The results show 3V increase in the Vt shift due to the nanoparticles for the same operating voltage. In addition a 6V reduction in the programming voltage is obtained due the nanoparticles. In addition, the effect of the trapping layer and tunnel oxide scaling on the 10 year retention time is studied. © 2012 IEEE.