Browsing by Author "Raahemifar, K."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access A heterogeneous memory organization with minimum energy consumption in 3D chip-multiprocessors(IEEE, 2016-05) Asad, Arghavan; Onsori, Salman; Fathy, M.; Jahed-Motlagh, M. R.; Raahemifar, K.Main memories play an important role in overall energy consumption of embedded systems. Using conventional memory technologies in future designs in nanoscale era cause a drastic increase in leakage power consumption and temperature-related problems. Emerging non-volatile memory (NVM) technologies offer many desirable characteristics such as near-zero leakage power, high density and non-volatility. They can significantly mitigate the issue of memory leakage power in future embedded chip-multiprocessor (eCMP) systems. However, they suffer from challenges such as limited write endurance and high write energy consumption which restrict them for adoption in modern memory systems. In this article, we propose a stacked hybrid memory system for 3D chip-multiprocessors to take advantages of both traditional and non-volatile memory technologies. For reaching this target, we present a convex optimization-based model that minimizes the system energy consumption while satisfy endurance constraint in order to design a reliable memory system. Experimental results show that the proposed method improves energy-delay product (EDP) and performance by about 44.8% and 13.8% on average respectively compared with the traditional memory design where single technology is used. © 2016 IEEE.Item Open Access High performance 3D CMP design with stacked hybrid memory architecture in the dark silicon era using a convex optimization model(IEEE, 2016-05) Onsori, Salman; Asad, Arghavan; Raahemifar, K.; Fathy, M.In this article, we present a convex optimization model to design a stacked hybrid memory system to improve performance and reduce energy consumption of the chip-multiprocessor (CMP). Our convex model optimizes numbers and placement of SRAM and STT-RAM memories on the memory layer, and efficiently maps applications/threads on cores in the core layer. Power consumption that is the main challenge in the dark silicon era is represented as a power constraint in this work and it is satisfied by the detailed optimization model in order to design a dark silicon aware 3D CMP. Experimental results show that the proposed architecture considerably improves the energy-delay product (EDP) and performance of the 3D CMP compared to the Baseline memory design. © 2016 IEEE.Item Open Access A high-performance hybrid memory architecture for embedded CMPs using a convex optimization model(IEEE, 2015-11) Onsori, Salman; Asad, Arghavan; Raahemifar, K.; Fathy, M.In this article, we present a convex optimization model to design a stacked hybrid memory system for 3D embedded chip-multiprocessors (eCMP). Our convex model optimizes numbers and placement of SRAM and STT-RAM memories on the memory layer, and maps applications/threads on cores in the core layer effectively. The detailed proposed model satisfies the power constraint which is the main challenge of dark-silicon era. Experimental results show that the proposed architecture considerably improves the energy-delay product (EDP) and performance of the 3D eCMP compared to the Baseline memory design. © 2015 IEEE.Item Open Access Notice of violation of IEEE publication principles an energy-efficient heterogeneous memory architecture for future dark silicon embedded chip-multiprocessors(IEEE Computer Society, 2018) Onsori, S.; Asad, A.; Raahemifar, K.; Fathy, M.Main memories play an important role in overall energy consumption of embedded systems. Using conventional memory technologies in future designs in nanoscale era causes a drastic increase in leakage power consumption and temperature-related problems. Emerging non-volatile memory (NVM) technologies offer many desirable characteristics such as near-zero leakage power, high density and non-volatility. They can significantly mitigate the issue of memory leakage power in future embedded chip-multiprocessor (eCMP) systems. However, they suffer from challenges such as limited write endurance and high write energy consumption which restrict them for adoption in modern memory systems. In this article, we present a convex optimization model to design a 3D stacked hybrid memory architecture in order to minimize the future embedded systems energy consumption in the dark silicon era. This proposed approach satisfies endurance constraint in order to design a reliable memory system. Our convex model optimizes numbers and placement of eDRAM and STT-RAM memory banks on the memory layer to exploit the advantages of both technologies in future eCMPs. Energy consumption, the main challenge in the dark silicon era, is represented as a major target in this work and it is minimized by the detailed optimization model in order to design a dark silicon aware 3D Chip-Multiprocessor. Experimental results show that in comparison with the Baseline memory design, the proposed architecture improves the energy consumption and performance of the 3D CMP on average about 61.33% and 9% respectively. IEEEItem Open Access OptMem: dark-silicon aware low latency hybrid memory design(IEEE, 2016-01) Onsori, Salman; Asad, Arghavan A; Raahemifar, K.; Fathy, M.In this article, we present a convex optimization model to design a three dimension (3D)stacked hybrid memory system to improve performance in the dark silicon era. Our convex model optimizes numbers and placement of static random access memory (SRAM) and spin-Transfer torque magnetic random-Access memory(STT-RAM) memories on the memory layer to exploit advantages of both technologies. Power consumption that is the main challenge in the dark silicon era is represented as a main constraint in this work and it is satisfied by the detailed optimization model in order to design a dark silicon aware 3D Chip-Multiprocessor (CMP). Experimental results show that the proposed architecture improves the energy consumption and performanceof the 3D CMPabout 25.8% and 12.9% on averagecompared to the Baseline memory design. © 2016 IEEE.