Browsing by Author "Ghaffari, M."
Now showing 1 - 20 of 28
- Results Per Page
- Sort Options
Item Open Access Atomic layer deposition synthesized TiOx thin films and their application as microbolometer active materials(AVS Science and Technology Society, 2016) Tanrikulu, M. Y.; Rasouli, H. R.; Ghaffari, M.; Topalli K.; Okyay, Ali KemalThis paper demonstrates the possible usage of TiOx thin films synthesized by atomic layer deposition as a microbolometer active material. Thin film electrical resistance is investigated as a function of thermal annealing. It is found that the temperature coefficient of resistance values can be controlled by coating/annealing processes, and the value as high as -9%/K near room temperature is obtained. The noise properties of TiOx films are characterized. It is shown that TiOx films grown by atomic layer deposition technique could have a significant potential to be used as a new active material for microbolometer-based applications. © 2016 American Vacuum Society.Item Open Access Au/TiO2 nanorod-based Schottky-type UV photodetectors(Wiley, 2012-10-12) Karaagac, H.; Aygun, L. E.; Parlak, M.; Ghaffari, M.; Bıyıklı, Necmi; Okyay, Ali KemalTiO2 nanorods (NRs) were synthesized on fluorine-doped tin oxide (FTO) pre-coated glass substrates using hydrothermal growth technique. Scanning electron microscopy studies have revealed the formation of vertically-aligned TiO2 NRs with length of similar to 2 mu m and diameter of 110128 nm, homogenously distributed over the substrate surface. 130 nm thick Au contacts using thermal evaporation were deposited on the n-type TiO2 NRs at room temperature for the fabrication of NR-based Schottky-type UV photodetectors. The fabricated Schottky devices functioned as highly sensitive UV photodetectors with a peak responsivity of 134.8 A/W (lambda = 350 nm) measured under 3 V reverse bias. (c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimItem Open Access A baseball-bat-like CdTe/TiO2 nanorods-based heterojunction core–shell solar cell(Elsevier, 2013) Karaagac, H.; Parlak, M.; Aygun, L. E.; Ghaffari, M.; Bıyıklı, Necmi; Okyay, Ali KemalRutile TiO2 nanorods on fluorine-doped thin oxide glass substrates via the hydrothermal technique were synthesized and decorated with a sputtered CdTe layer to fabricate a core-shell type n-TiO2/p-CdTe solar cell. Absorbance spectrum verified the absorption contribution of both TiO2 and CdTe to the absorption process. The solar cell parameters, such as open circuit voltage, short circuit current density, fill factor and power conversion efficiency were found to be 0.34 V, 1.27 mA cm-2, 28% and 0.12%, respectively. .Item Open Access Changes in the resistance to corrosion of thermally passivated titanium aluminide during exposure to sodium chloride solution(Kluwer Academic Publishers, 2015) Saebnoori, E.; Shahrabi, T.; Jafarian H.; Ghaffari, M.In this study the surface of Ti-47Al-2Cr (at. %) was modified by heating and exposure to nitrogen gas flow to form a predominantly oxide layer on the surface. Samples were then immersed in Ringer's solution and 3.5 wt. % sodium chloride solution and electrochemical impedance spectroscopy tests were performed at regular intervals. The results showed that the layer is highly resistant to corrosion. The equivalent circuit proposed for the impedance curves includes a Warburg element, because diffusion is controlling charge transfer through the passive surface layer. The resistance of the layer was not significantly reduced even after 300 h exposure to solutions and scanning electron micrographs showed the surface was not damaged. © 2013 Springer Science+Business Media Dordrecht.Item Open Access Compositional homogeneity in a medical-grade stainless steel sintered with a Mn-Si additive(Elsevier, 2012-06-09) Salahinejad, E.; Hadianfard, M.J.; Ghaffari, M.; Mashhadi, S.B.; Okyay, Ali KemalIn this paper, chemical composition uniformity in amorphous/ nanocrystallization medical-grade stainless steel (ASTM ID: F2581) sintered with a Mn-Si additive was studied via scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The results show that as a result of sintering at 1000 °C, no dissociation of Mn-Si additive particles embedded in the stainless steel matrix occurs. In contrast, sintering at 1050 °C develops a relatively homogeneous microstructure from the chemical composition viewpoint. The aforementioned phenomena are explained by liquation of the Mn-Si eutectic additive, thereby wetting of the main powder particles, penetrating into the particle contacts and pore zones via capillary forces, and providing a path of high diffusivity.Item Open Access Effect of Au nano-particles on TiO2 nanorod electrode in dye-sensitized solar cells(Elsevier, 2012-05-26) Ghaffari, M.; Cosar, M. B.; Yavuz, H. I.; Ozenbas, M.; Okyay, Ali KemalAu nano particles (NPs) were deposited on vertically grown TiO2 nanorod arrays on FTO substrate by hydrothermal process. Metal nanoparticles were loaded onto the surface of TiO2 nanorods via photochemical reduction process under ultraviolet irradiation. X-ray diffraction (XRD), electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the as-prepared Au/TiO2 nanorod composites. Current density-voltage (I-V) measurements were obtained from a two-electrode sandwich type cell. The presence of Au nanoparticles can help the electron-hole separation by attracting photoelectrons. Addition of Au nanoparticles to the TiO2 nanorod significantly increased the fill factor and J(SC) (short circuit current density). The application of Au NPs TiO2 nanorods in improving the performance of DSSCs is promising.Item Open Access Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying(Elsevier Ltd, 2014) Alijani F.; Amini, R.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalIn the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti-41Ni-9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0-12. h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19') and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time.Item Open Access Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni-Ti elemental powders(2012) Ghadimi, M.; Shokuhfar, A.; Rostami H.R.; Ghaffari, M.Nickel and Titanium elemental powders with a nominal composition Ni-50 at.%Ti were mechanical alloyed in a planetary high-energy ball mill in different milling conditions (5, 10, 20, 40 and 60 h). The investigation revealed that increasing milling time leads to a reduction in crystallite size, and after 60 h of milling, the Ti dissolved in Ni lattice and NiTi (B2) phase was obtained. With milling time, morphology of pre-alloyed powders changed from lamella to globular. Annealing of as-milled powders at 1173 K for 900 s led to formation of nanocrystalline NiTi (B19′), grain growth and release of internal strain. The results indicated that this technique is a powerful and high productive process for preparing NiTi intermetallic compound with nanocrystalline structure and appropriate morphology. © 2012 Elsevier B.V. All rights reserved.Item Open Access Evaluate of braze joint strength and microstructure characterize of titanium-CP with Ag-based filler alloy(2012) Ganjeh, E.; Sarkhosh H.; Khorsand H.; Sabet H.; Dehkordi, E.H.; Ghaffari, M.This research investigates the influences of brazing parameters (temperature and time) on microstructures and the mechanical properties of commercially pure (CP) titanium sheet when it is brazed with CBS34 (Ag-20Cu-22Zn-24Cd) braze filler foil. Brazing was performed in a conventional atmosphere control furnace. The brazing temperatures and holding times employed in this study were 800-870°C and 10-20min, respectively. The qualities of the brazed joints were evaluated by ultrasonic test and the microstructure and phase constitution of the bonded joints were analyzed by means of metallography, scanning electron microscope (SEM) and X-ray diffraction (XRD). The mechanical properties of brazed joints were evaluated by microhardness and shear tests. The diffusion between Ti, Ag, Cu, Zn and Cd from substrate and braze alloy, developed a strong reaction between each other. A number of intermetallic phases, such as TiCu and Ti2Cu in the Ag-Zn solid solution matrix have been identified especially at 870°C - 20min. Both the brazing temperature and the holding time are critical factors for controlling the microstructure and hence the mechanical properties of the brazed joints. The optimum brazing parameters was achieved at 870°C - 20min. Based on the shear test result, all cracks propagate along the brittle intermetallic compounds like Ti2Cu in the reaction layer which typically are composed of quasi-cleavage (Ag-Zn matrix) and brittle appearance. © 2012 Elsevier Ltd.Item Open Access Formation of B19′, B2, and amorphous phases during mechano-synthesis of nanocrystalline NiTi intermetallics(Elsevier BV, 2014-02) Amini, R.; Alijani, F.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalNi-50Ti shape memory alloy was synthesized by mechanical alloying of the elemental powders mixture under an argon gas atmosphere. The structural and microstructural properties of the alloyed powders were evaluated by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. Moreover, the Vickers microhardness of the powders was estimated at different milling times. According to the results, by milling progression, the amount of the amorphous phase increased considerably and after sufficient milling time (48h), the mechano-crystallization of the amorphous phase into the more stable crystalline phases (i.e. B2 and B19') occurred. It was found that the particles size and microhardness were significantly affected by the formation of the amorphous, B2, and B19' phases. It was also deduced that, by appropriate heating and cooling cycles, the B2 and thermally-induced B19' phases can be created. Furthermore, it was inferred that the formation of undesirable intermetallic phases (particularly NiTi2) during the heating cycle was considerably reduced by milling time evolution. © 2013 Elsevier B.V.Item Open Access Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys(2012) Ganjeh, E.; Sarkhosh H.; Bajgholi, M.E.; Khorsand H.; Ghaffari, M.Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 °C for the titanium-based filler and 900-990 °C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni and Zr along the joint. Accordingly, existence of Zr 2Cu, Ti 2Cu and (Ti,Zr) 2Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 °C for Ti-based and 990 °C for Zr-based) resulted in an acicular Widmanstätten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. © 2012 Elsevier Inc. All rights reserved.Item Open Access Investigation of grain refinement in Al/Al2O3/B 4C nano-composite produced by ARB(2014) Akbari Beni H.; Alizadeh, M.; Ghaffari, M.; Amini, R.In this study, Al/Al2O3/B4C nano-composites were fabricated via the accumulative roll bonding (ARB) process. The grain refinement of the Al/Al2O3/B4C nano-composite strips during the ARB process was studied. Microstructural characterizations of the fabricated composites after 2, 5, and 9 cycles were performed by transmission electron microscopy (TEM). The results showed that the composite sample, after 9 cycles, was filled with homogenously distributed ultra fine grains with an average grain size of 230 nm. The findings also revealed that the increase in the dislocation density due to the presence of the nano-sized particles resulted in the grain refinement of the specimens. It was also found that the grain refinement is accelerated by the presence of the refinement particles. © 2013 Elsevier Inc. All rights reserved.Item Open Access Investigation of local structure effect and X-ray absorption characteristics (EXAFS) of Fe (Ti) K-edge on photocatalyst properties of SrTi (1-x)Fe xO (3-δ)(2012) Ghaffari, M.; Liu, T.; Huang H.; Tan O.K.; Shannon, M.In this study, the STF x photocatalyst powder was synthesized with a high temperature solid state reaction. The microstructures and surface of samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electronic properties and local structure of the perovskite STF x (0 ≤ x ≤ 1) systems were probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The XPS results revealed that with increasing iron doping, the amount of Fe 3+ and Fe 4+ increased significantly. The X-ray absorption data are discussed in detail with respect to the Fe (Ti) K-edge. The substitution of iron by titanium increased the Ti (Fe)-O first shell disorder factors that can be explained by increasing the oxygen vacancies. Oxygen vacancies or defects act as electron traps, which could capture the photo induced electrons and thus could effectively inhibit the recombination of the photo induced electrons and holes. Moreover due to the substitution of Ti with Fe, lattice shrinkage was observed and the largest derivation from the Gaussian distribution in STF x was from those samples with x = 0.6 and x = 0.8. The substitution of iron by titanium increased the iron valence state, hence the formation of the Jahn-Teller Fe 4+ ion. With increasing iron dopant the [Ti(Fe)-O] ave decreased and bond length of [Ti-O] and the consequent [Ti-O-Ti] increased and this phenomenon affected the photocatalyst and photo degradation properties of material and also decreased its efficiency. © 2012 Elsevier B.V. All rights reserved.Item Open Access Investigation on braze joint strength and microstructure of Ti-CP with Ag and Ti base filler alloys(American Welding Society, 2012) Ganjeh, E.; Khorsand H.; Sarkhosh H.; Ghaffari, M.; Sabet H.; Dehkordi, E.H.This research investigates influences of brazing parameters (brazing alloy, temperature and time) on microstructures and mechanical properties of a commercially pure (CP) titanium sheet which is brazed with CBS 34 (Ag-based) and STEMET 1228 (Ti-based) braze-filler foils. Brazing was performed in a conventional inert furnace at temperature ranges of 800-870°C and 10-30 minutes for holding times. Qualities of the brazed joints were evaluated by ultrasonic testing, and then, microstructure and phase constitution of the bonded joints were analyzed by means of metallography, scanning electron microscope (SEM), and X-ray diffraction (XRD). Mechanical properties of brazed joints were evaluated by shear testing. Diffusion of titanium from substrate to filler alloy developed a strong reaction between them. A number of phases such as TiCu, Ti 2Cu, TiAg, Ag-Zn solid solution matrix (for Ag-based brazed samples) and Ti 2Cu, (Ti,Zr) 2Ni, Zr 2Cu (for Ti-based brazed samples) have been identified. The optimum brazing parameters were achieved at a temperature of 870 °C-20 min for CBS 34 and 870 °C-30 min for STEMET 1228. The specimen using STEMET 1228 braze alloy demonstrates best bonding strength (equal to Ti-CP tensile strength). Copyright 2012 ASM International® All rights reserved.Item Open Access Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying(2013) Mojtahedi, M.; Goodarzi, M.; Aboutalebi, M.R.; Ghaffari, M.; Soleimanian V.In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites. © 2012 Elsevier B.V. All rights reserved.Item Open Access Liquid-phase sintering of medical-grade P558 stainless steel using a new biocompatible eutectic additive(Elsevier, 2012-02-02) Salahinejad, E.; Hadianfard, M. J.; Ghaffari, M.; Mashhadi, S. B.; Okyay, Ali KemalOne of the effective approaches to reduce residual pores in powder metallurgy parts is activated liquid-phase sintering process using proper additives. In this work, for the first time, a new biocompatible additive (Mn-11.5 wt.% Si, a eutectic alloy) is experimented for liquid-phase sintering of nanocrystalline/amorphous P558 stainless steel powders. It is realized that by increasing the sintering aid content and temperature, the density is effectively increased: a sharp densification progress when the sintering temperature increases from 1000 °C to 1050 °C and a slower densification rate when it exceeds 1050 °C. This preliminary study opens up the development of high-density medical-grade stainless steels produced by powder metallurgy, where suitable additives can lower sintering temperature and time, which is promising for retarding grain growth and commercial applications.Item Open Access Microstructural association between mechanical behavior with bending fracture surfaces in Astaloy CrA sintered parts alloyed by Cu and C(Elsevier Ltd, 2014) Khorsand H.; Ghaffari, M.; Ganjeh, E.Application of powder metallurgy technique, a method presenting both economic and technical concepts for producing sintered parts, has been expanding in automobile and other engineering industries. Powder metallurgy parts usually possess residual porosity in their microstructures deteriorating mechanical performance. There have been many solutions to increasing of strength in these parts such as applying different heat treatment or adding alloying elements. It is well known that Fe-Cu-C is the one of main alloying system for both increasing the strength and decreasing cost of them. In this study, the microstructure, mechanical properties (transverse rapture strength and hardness), crack behavior and fracture modes of a low alloy Fe-Cr powder (Astaloy CrA) with different amount of copper (0, 1 and 2. wt.%) and carbon, in form of graphite (0.45, 0.6 and 0.8. wt.%) sintered at conventional condition have been investigated. Microstructural evolution showed adding copper and graphite as alloying elements could generate widespread of strength (857-1380. MPa) and hardness (170-295 HV5). Developing different phases in microstructure was the main reason for various mechanical properties. Crack coalescence phenomenon leads to fracturing with ductile (at sinter-necks) and brittle morphology. Micro-mechanism of fracture related to transparticle and interparticle crack propagation. © 2013 Elsevier Ltd.Item Open Access Microstructural characterization of medical-grade stainless steel powders prepared by mechanical alloying and subsequent annealing(Elsevier, 2013) Salahinejad, E.; Hadianfard, M. J.; Ghaffari, M.; Amini, R.; Mashhadi, S. B.; Okyay, Ali KemalThe harmful effect of nickel ions released from conventional stainless steel implants has provided a high level of motivation for the further development of nickel-free stainless steels. In this paper, the microstructure of medical-grade nickel-free stainless steel powders, with the chemical composition of ASTM F2581, is studied during mechanical alloying and subsequent annealing. Rietveld X-ray diffraction and transmission electron microscopy evaluations reflect nanocrystallization, austenitization and amorphization of the powders due to mechanical activation. It is also realized that annealing of the as-milled powder can develop a single austenitic structure with nanometric crystallite sizes, implying a considerable inherent resistance to grain growth. This study demonstrates the merit of mechanical alloying and subsequent annealing in the development of nanostructured medical-grade stainless steels.Item Open Access Omnidirectional antireflective and mechanically stable superhydrophobic surfaces from nanostructured ormosil colloids(American Chemical Society, 2012) Yıldırım, A.; Ghaffari, M.; Khudiyev, T.; Dağlar, B.; Budunoğlu, H.; Okyay, Ali Kemal; Bayındır, MehmetItem Open Access Phase transformation during mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si alloys(Elsevier, 2013) Amini, R.; Shamsipoor, A.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalMechano-synthesis of Fe-32Mn-6Si alloy by mechanical alloying of the elemental powder mixtures was evaluated by running the ball milling process under an inert argon gas atmosphere. In order to characterize the as-milled powders, powder sampling was performed at predetermined intervals from 0.5 to 192 h. X-ray florescence analyzer, X-ray diffraction, scanning electron microscope, and high resolution transmission electron microscope were utilized to investigate the chemical composition, structural evolution, morphological changes, and microstructure of the as-milled powders, respectively. According to the results, the nanocrystalline Fe-Mn-Si alloys were completely synthesized after 48 h of milling. Moreover, the formation of a considerable amount of amorphous phase during the milling process was indicated by quantitative X-ray diffraction analysis as well as high resolution transmission electron microscopy image and its selected area diffraction pattern. It was found that the α-to-γ and subsequently the amorphous-to-crystalline (especially martensite) phase transformation occurred by milling development.