Liquid-phase sintering of medical-grade P558 stainless steel using a new biocompatible eutectic additive

Series

Abstract

One of the effective approaches to reduce residual pores in powder metallurgy parts is activated liquid-phase sintering process using proper additives. In this work, for the first time, a new biocompatible additive (Mn-11.5 wt.% Si, a eutectic alloy) is experimented for liquid-phase sintering of nanocrystalline/amorphous P558 stainless steel powders. It is realized that by increasing the sintering aid content and temperature, the density is effectively increased: a sharp densification progress when the sintering temperature increases from 1000 °C to 1050 °C and a slower densification rate when it exceeds 1050 °C. This preliminary study opens up the development of high-density medical-grade stainless steels produced by powder metallurgy, where suitable additives can lower sintering temperature and time, which is promising for retarding grain growth and commercial applications.

Source Title

Materials Letters

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English