Browsing by Author "Garifullin, R."
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Amyloid-like peptide nanofiber templated titania nanostructures as dye sensitized solar cell anodic materials(Royal Society of Chemistry, 2013) Acar, H.; Garifullin, R.; Aygun, L. E.; Okyay, Ali Kemal; Güler, Mustafa O.One-dimensional titania nanostructures can serve as a support for light absorbing molecules and result in an improvement in the short circuit current (Jsc) and open circuit voltage (Voc) as a nanostructured and high-surface-area material in dye-sensitized solar cells. Here, self-assembled amyloid-like peptide nanofibers were exploited as an organic template for the growth of one-dimensional titania nanostructures. Nanostructured titania layers were utilized as anodic materials in dye sensitized solar cells (DSSCs). The photovoltaic performance of the DSSC devices was assessed and an enhancement in the overall cell performance compared to unstructured titania was observed.Item Open Access Encapsulation of a zinc phthalocyanine derivative in self-assembled peptide nanofibers(The Royal Society of Chemistry, 2012) Garifullin, R.; Erkal, T. S.; Tekin, S.; Ortaç, B.; Gürek, A. G.; Ahsen, V.; Yaglioglu, H. G.; Elmali, A.; Güler, Mustafa O.In this article, we demonstrate encapsulation of octakis(hexylthio) zinc phthalocyanine molecules by non-covalent supramolecular organization within self-assembled peptide nanofibers. Peptide nanofibers containing octakis(hexylthio) zinc phthalocyanine molecules were obtained via a straight-forward one-step self-assembly process under aqueous conditions. Nanofiber formation results in the encapsulation and organization of the phthalocyanine molecules, promoting ultrafast intermolecular energy transfer. The morphological, mechanical, spectroscopic and non-linear optical properties of phthalocyanine containing peptide nanofibers were characterized by TEM, SEM, oscillatory rheology, UV-Vis, fluorescence, ultrafast pump-probe and circular dichroism spectroscopy techniques. The ultrafast pump-probe experiments of octakis(hexylthio) zinc phthalocyanine molecules indicated pH controlled non-linear optical characteristics of the encapsulated molecules within self-assembled peptide nanofibers. This method can provide a versatile approach for bottom-up fabrication of supramolecular organic electronic devices. © 2012 The Royal Society of Chemistry.Item Open Access Noncovalent functionalization of a nanofibrous network with a bio-inspired heavy metal binding peptide(2013) Garifullin, R.; Ustahuseyin, O.; Celebioglu A.; Cinar, G.; Uyar, Tamer; Güler, Mustafa O.Peptide-polymer nanofibrous networks can be developed to obtain hybrid systems providing both functionalities of peptides and stability and processability of the polymers. In this work, a bio-inspired heavy metal binding peptide was synthesized and noncovalently immobilized on water-insoluble electrospun hydroxypropyl-beta-cyclodextrin nanofibers (CDNF). The peptide functionalized hybrid nanofibers were able to bind to heavy metal ions and facilitated removal of metal ions from water. The peptide-polymer scavenging system has potential for development of further molecular recognition systems with various peptide sequences or host-guest inclusion complexes. © 2013 The Royal Society of Chemistry.Item Open Access One-dimensional peptide nanostructure templated growth of iron phosphate nanostructures for lithium-ion battery cathodes(American Chemical Society, 2016-06) Susapto, H. H.; Kudu, O. U.; Garifullin, R.; Yllmaz, E.; Güler, Mustafa O.Template-directed synthesis of nanomaterials can provide benefits such as small crystalline size, high surface area, large surface-to-volume ratio, and structural stability. These properties are important for shorter distance in ion/electron movement and better electrode surface/electrolyte contact for energy storage applications. Here nanostructured FePO4 cathode materials were synthesized by using peptide nanostructures as a template inspired by biomineralization process. The amorphous, high surface area FePO4 nanostructures were utilized as a cathode for lithium-ion batteries. Discharge capacity of 155 mAh/g was achieved at C/20 current rate. The superior properties of biotemplated and nanostructured amorphous FePO4 are shown compared to template-free crystalline FePO4.Item Open Access Self-assembled peptide nanofiber templated ALD growth of TiO2 and ZnO semiconductor nanonetworks(Wiley - V C H Verlag GmbH & Co. KGaA, 2016) Garifullin, R.; Eren, H.; Ulusoy, T. G.; Okyay, Ali Kemal; Bıyıklı, Necmi; Güler, Mustafa O.Here peptide amphiphile (PA) nanofiber network is exploited as a three‐dimensional soft template to construct anatase TiO2 and wurtzite ZnO nanonetworks. Atomic layer deposition (ALD) technique is used to coat the organic nanonetwork template with TiO2and ZnO. ALD method enables uniform and conformal coatings with precisely controlled TiO2 and ZnO thickness. The resulting semiconducting metal oxide nanonetworks are utilized as anodic materials in dye‐sensitized solar cells. Effect of metal oxide layer thickness on device performance is studied. The devices based on thin TiO2 coatings (<10 nm) demonstrate considerable dependence on material thickness, whereas thicker (>17 nm) ZnO‐based devices do not show an explicit correlation.Item Open Access Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures(2011) Acar H.; Garifullin, R.; Güler, Mustafa O.Mineralized biological materials such as shells, skeleton, and teeth experience biomineralization. Biomimetic materials exploit the biomineralization process to form functional organic-inorganic hybrid nanostructures. In this work, we mimicked the biomineralization process by the de novo design of an amyloid-like peptide that self-assembles into nanofibers. Chemically active groups enhancing the affinity for metal ions were used to accumulate silicon and titanium precursors on the organic template. The self-assembly process and template effect were characterized by CD, FT-IR, UV-vis, fluorescence, rheology, TGA, SEM, and TEM. The self-assembled organic nanostructures were exploited as a template to form high-aspect-ratio 1-D silica and titania nanostructures by the addition of appropriate precursors. Herein, a new bottom-up approach was demonstrated to form silica and titania nanostructures that can yield wide opportunities to produce high-aspect-ratio inorganic nanostructures with high surface areas. The materials developed in this work have vast potential in the fields of catalysis and electronic materials. © 2011 American Chemical Society.Item Open Access Supramolecular chirality in self-assembled peptide amphiphile nanostructures(Royal Society of Chemistry, 2015) Garifullin, R.; Güler, Mustafa O.Induced supramolecular chirality was investigated in the self-assembled peptide amphiphile (PA) nanosystems. Having shown that peptide chirality can be transferred to the covalently-attached achiral pyrene moiety upon PA self-assembly, the chiral information is transferred to molecular pyrene via weak noncovalent interactions. In the first design of a supramolecular chiral system, the chromophore was covalently attached to a peptide sequence (VVAGH) via an ε-aminohexanoic acid spacer. Covalent attachment yielded a PA molecule self-assembling into nanofibers. In the second design, the chromophore was encapsulated within the hydrophobic core of self-assembled nanofibers of another PA consisting of the same peptide sequence attached to lauric acid. We observed that supramolecular chirality was induced in the chromophore by PA assembly into chiral nanostructures, whether it was covalently attached, or noncovalently bound.Item Open Access A supramolecular peptide nanofiber templated Pd nanocatalyst for efficient Suzuki coupling reactions under aqueous conditions(Royal Society of Chemistry, 2012) Khalily, M. A.; Ustahuseyin, O.; Garifullin, R.; Genc, R.; Güler, Mustafa O.A bioinspired peptide amphiphile nanofiber template for formation of one-dimensional Pd nanostructures is demonstrated. The Pd and peptide nanocatalyst system enabled efficient catalytic activity in Suzuki coupling reactions in water at room temperature. The nanocatalyst system can be easily separated and reused in successive reactions without significant loss in activity and structural integrity. © 2012 The Royal Society of Chemistry.Item Open Access Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls(Elsevier, 2014) Erdogan, D. A.; Polat, M.; Garifullin, R.; Güler, Mustafa O.; Ozensoy, E.Polystyrene cross-linked divinyl benzene (PS-co-DVB) microspheres were used as an organic template in order to synthesize photocatalytic TiO2 microspheres and microbowls. Photocatalytic activity of the microbowl surfaces were demonstrated both in the gas phase via photocatalytic NO(g) oxidation by O2(g) as well as in the liquid phase via Rhodamine B degradation. Thermal degradation mechanism of the polymer template and its direct influence on the TiO2 crystal structure, surface morphology, composition, specific surface area and the gas/liquid phase photocatalytic activity data were discussed in detail. With increasing calcination temperatures, spherical polymer template first undergoes a glass transition, covering the TiO 2 film, followed by the complete decomposition of the organic template to yield TiO2 exposed microbowl structures. TiO2 microbowl systems calcined at 600 °C yielded the highest per-site basis photocatalytic activity. Crystallographic and electronic properties of the TiO2 microsphere surfaces as well as their surface area play a crucial role in their ultimate photocatalytic activity. It was demonstrated that the polymer microsphere templated TiO2 photocatalysts presented in the current work offer a promising and a versatile synthetic platform for photocatalytic DeNOx applications for air purification technologies.Item Open Access Triphenylphosphonium moiety modulates proteolytic stability and potentiates neuroprotective activity of antioxidant tetrapeptides in vitro(Frontiers Media S.A., 2018) Akhmadishina, R. A.; Garifullin, R.; Petrova, N. V.; Kamalov, M. I.; Abdullin, T. I.Although delocalized lipophilic cations have been identified as effective cellular and mitochondrial carriers for a range of natural and synthetic drug molecules, little is known about their effects on pharmacological properties of peptides. The effect of triphenylphosphonium (TPP) cation on bioactivity of antioxidant tetrapeptides based on the model opioid YRFK motif was studied. Two tetrapeptide variants with L-arginine (YRFK) and D-arginine (YrFK) were synthesized and coupled with carboxyethyl-TPP (TPP-3) and carboxypentyl-TPP (TPP-6) units. The TPP moiety noticeably promoted YRFK cleavage by trypsin, but effectively prevented digestion of more resistant YrFK attributed, respectively, to structure-organizing and shielding effects of the TPP cation on conformational variants of the tetrapeptide motif. The TPP moiety enhanced radical scavenging activity of the modified YRFK in a model Fenton-like reaction, whereas decreased reactivity was revealed for both YrFK and its TPP derivative. The starting motifs and modified oligopeptides, especially the TPP-6 derivatives, suppressed acute oxidative stress in neuronal PC-12 cells during a brief exposure similarly with glutathione. The effect of oligopeptides was compared upon culturing of PC-12 cells with CoCl2, L-glutamic acid, or menadione to mimic physiologically relevant oxidative states. The cytoprotective activity of oligopeptides significantly depended on the type of oxidative factor, order of treatment and peptide structure. Pronounced cell-protective effect was established for the TPP-modified oligopeptides, which surpassed that of the unmodified motifs. The protease-resistant TPP-modified YrFK showed the highest activity when administered 24 h prior to the cell damage. Our results suggest that the TPP cation can be used as a modifier for small therapeutic peptides to improve their pharmacokinetic and pharmacological properties.