One-dimensional peptide nanostructure templated growth of iron phosphate nanostructures for lithium-ion battery cathodes

Series

Abstract

Template-directed synthesis of nanomaterials can provide benefits such as small crystalline size, high surface area, large surface-to-volume ratio, and structural stability. These properties are important for shorter distance in ion/electron movement and better electrode surface/electrolyte contact for energy storage applications. Here nanostructured FePO4 cathode materials were synthesized by using peptide nanostructures as a template inspired by biomineralization process. The amorphous, high surface area FePO4 nanostructures were utilized as a cathode for lithium-ion batteries. Discharge capacity of 155 mAh/g was achieved at C/20 current rate. The superior properties of biotemplated and nanostructured amorphous FePO4 are shown compared to template-free crystalline FePO4.

Source Title

ACS Applied Materials and Interfaces

Publisher

American Chemical Society

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English