Encapsulation of a zinc phthalocyanine derivative in self-assembled peptide nanofibers

Date

2012

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Materials Chemistry

Print ISSN

0959-9428

Electronic ISSN

Publisher

The Royal Society of Chemistry

Volume

22

Issue

6

Pages

2553 - 2559

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In this article, we demonstrate encapsulation of octakis(hexylthio) zinc phthalocyanine molecules by non-covalent supramolecular organization within self-assembled peptide nanofibers. Peptide nanofibers containing octakis(hexylthio) zinc phthalocyanine molecules were obtained via a straight-forward one-step self-assembly process under aqueous conditions. Nanofiber formation results in the encapsulation and organization of the phthalocyanine molecules, promoting ultrafast intermolecular energy transfer. The morphological, mechanical, spectroscopic and non-linear optical properties of phthalocyanine containing peptide nanofibers were characterized by TEM, SEM, oscillatory rheology, UV-Vis, fluorescence, ultrafast pump-probe and circular dichroism spectroscopy techniques. The ultrafast pump-probe experiments of octakis(hexylthio) zinc phthalocyanine molecules indicated pH controlled non-linear optical characteristics of the encapsulated molecules within self-assembled peptide nanofibers. This method can provide a versatile approach for bottom-up fabrication of supramolecular organic electronic devices. © 2012 The Royal Society of Chemistry.

Course

Other identifiers

Book Title

Keywords

Citation