Browsing by Author "Günay, O."
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Restricted Benzeşme: [şiir].(2002) Günay, O.Item Open Access Covariance matrix-based fire and flame detection method in video(Springer, 2011-09-17) Habiboğlu, Y. H.; Günay, O.; Çetin, A. EnisThis paper proposes a video-based fire detection system which uses color, spatial and temporal information. The system divides the video into spatio-temporal blocks and uses covariance-based features extracted from these blocks to detect fire. Feature vectors take advantage of both the spatial and the temporal characteristics of flame-colored regions. The extracted features are trained and tested using a support vector machine (SVM) classifier. The system does not use a background subtraction method to segment moving regions and can be used, to some extent, with non-stationary cameras. The computationally efficient method can process 320×240 video frames at around 20 frames per second in an ordinary PC with a dual core 2.2 GHz processor. In addition, it is shown to outperform a previous method in terms of detection performance.Item Open Access Diferansiyel PIR algılayıcılarla dalgacık tabanlı alev tespiti(IEEE, 2012-04) Erden, F.; Töreyin, B. U.; Soyer, E. B.; İnaç, İ.; Günay, O.; Köse, K.; Çetin, A. EnisBu makalede, diferansiyel kızılberisi algılayıcı (PIR) kullanılarak geliştirilen bir alev tespit sistemi önerilmektedir. Diferansiyel kızılberisi algılayıcılar, yalnızca görüş alanlarındaki ani sıcaklık değişikliklerine duyarlıdır ve zamanla değişen sinyaller üretir. Algılayıcı sinyaline ait dalgacık dönüşümü, öznitelik çıkarmak için kullanılır ve bu öznitelik vektörü hızlı titreşen kontrolsüz bir ateşin alevi ve bir kişinin yürümesi olaylarıyla eğitilmiş Markov modellerine sokulur. En yüksek olasılıkla sonuçlanan modele karar verilir. Karşılaştırmalı sonuçlar, sistemin geniş odalarda ateş tespiti için kullanılabileceğini düşündürmektedir.Item Open Access Energy efficient cosine similarity measures according to a convex cost function(Springer London, 2017) Akbaş, C. E.; Günay, O.; Taşdemir K.; Çetin, A. EnisWe propose a new family of vector similarity measures. Each measure is associated with a convex cost function. Given two vectors, we determine the surface normals of the convex function at the vectors. The angle between the two surface normals is the similarity measure. Convex cost function can be the negative entropy function, total variation (TV) function and filtered variation function constructed from wavelets. The convex cost functions need not to be differentiable everywhere. In general, we need to compute the gradient of the cost function to compute the surface normals. If the gradient does not exist at a given vector, it is possible to use the sub-gradients and the normal producing the smallest angle between the two vectors is used to compute the similarity measure. The proposed measures are compared experimentally to other nonlinear similarity measures and the ordinary cosine similarity measure. The TV-based vector product is more energy efficient than the ordinary inner product because it does not require any multiplications.Item Open Access Fire detection in video using LMS based active learning(Springer, 2009) Günay, O.; Taşdemir K.; Töreyin, B. U.; Çetin, A. EnisIn this paper, a video based algorithm for fire and flame detection is developed. In addition to ordinary motion and color clues, flame flicker is distinguished from motion of flame colored moving objects using Markov models. Irregular nature of flame boundaries is detected by performing temporal wavelet analysis using Hidden Markov Models as well. Color variations in fire is detected by computing the spatial wavelet transform of moving fire-colored regions. Boundary of flames are represented in wavelet domain and irregular nature of the boundaries of fire regions is also used as an indication of the flame flicker. Decisions from sub-algorithms are linearly combined using an adaptive active fusion method. The main detection algorithm is composed of four sub-algorithms (i) detection of fire colored moving objects, (ii) temporal, and (iii) spatial wavelet analysis for flicker detection and (iv) contour analysis of fire colored region boundaries. Each algorithm yields a continuous decision value as a real number in the range [-1, 1] at every image frame of a video sequence. Decision values from sub-algorithms are fused using an adaptive algorithm in which weights are updated using the least mean square (LMS) method in the training (learning) stage.Item Open Access Video based wildfire detection at night(ELSEVIER, 2009-05-06) Günay, O.; Taşdemir K.; Töreyin, B. U.; Çetin, A. EnisThere has been an increasing interest in the study of video based fire detection algorithms as video based surveillance systems become widely available for indoor and outdoor monitoring applications. A novel method explicitly developed for video based detection of wildfires at night (in the dark) is presented in this paper. The method comprises four sub-algorithms: (i) slow moving video object detection, (ii) bright region detection, (iii) detection of objects exhibiting periodic motion, and (iv) a sub-algorithm interpreting the motion of moving regions in video. Each of these sub-algorithms characterizes an aspect of fire captured at night by a visible range PTZ camera. Individual decisions of the sub-algorithms are combined together using a least-mean-square (LMS) based decision fusion approach, and fire/nofire decision is reached by an active learning method.Item Open Access Video fire detection-Review(Elsevier, 2013) Çetin, A. Enis; Dimitropoulos, K.; Gouverneur, B.; Grammalidis, N.; Günay, O.; Habiboğlu, Y. H.; Töreyin, B. U.; Verstockt, S.This is a review article describing the recent developments in Video based Fire Detection (VFD). Video surveillance cameras and computer vision methods are widely used in many security applications. It is also possible to use security cameras and special purpose infrared surveillance cameras for fire detection. This requires intelligent video processing techniques for detection and analysis of uncontrolled fire behavior. VFD may help reduce the detection time compared to the currently available sensors in both indoors and outdoors because cameras can monitor "volumes" and do not have transport delay that the traditional "point" sensors suffer from. It is possible to cover an area of 100 km2 using a single pan-tilt-zoom camera placed on a hilltop for wildfire detection. Another benefit of the VFD systems is that they can provide crucial information about the size and growth of the fire, direction of smoke propagation.