Fire detection in video using LMS based active learning

Date

2009

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
0
views
49
downloads

Citation Stats

Series

Abstract

In this paper, a video based algorithm for fire and flame detection is developed. In addition to ordinary motion and color clues, flame flicker is distinguished from motion of flame colored moving objects using Markov models. Irregular nature of flame boundaries is detected by performing temporal wavelet analysis using Hidden Markov Models as well. Color variations in fire is detected by computing the spatial wavelet transform of moving fire-colored regions. Boundary of flames are represented in wavelet domain and irregular nature of the boundaries of fire regions is also used as an indication of the flame flicker. Decisions from sub-algorithms are linearly combined using an adaptive active fusion method. The main detection algorithm is composed of four sub-algorithms (i) detection of fire colored moving objects, (ii) temporal, and (iii) spatial wavelet analysis for flicker detection and (iv) contour analysis of fire colored region boundaries. Each algorithm yields a continuous decision value as a real number in the range [-1, 1] at every image frame of a video sequence. Decision values from sub-algorithms are fused using an adaptive algorithm in which weights are updated using the least mean square (LMS) method in the training (learning) stage.

Source Title

Fire Technology

Publisher

Springer

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English