Browsing by Author "Erdem, T."
Now showing 1 - 20 of 36
- Results Per Page
- Sort Options
Item Open Access CdSe/CdSe1-xTex core/crown heteronanoplatelets: tuning the excitonic properties without changing the thickness(American Chemical Society, 2017) Kelestemur Y.; Guzelturk, B.; Erdem, O.; Olutas M.; Erdem, T.; Usanmaz, C. F.; Gungor K.; Demir, Hilmi VolkanHere we designed and synthesized CdSe/CdSe1-xTex core/crown nanoplatelets (NPLs) with controlled crown compositions by using the core-seeded-growth approach. We confirmed the uniform growth of the crown regions with well-defined shape and compositions by employing transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. By precisely tuning the composition of the CdSe1-xTex crown region from pure CdTe (x = 1.00) to almost pure CdSe doped with several Te atoms (x = 0.02), we achieved tunable excitonic properties without changing the thickness of the NPLs and demonstrated the evolution of type-II electronic structure. Upon increasing the Te concentration in the crown region, we obtained continuously tunable photoluminescence peaks within the range of ∼570 nm (for CdSe1-xTex crown with x = 0.02) and ∼660 nm (for CdSe1-xTex crown with x = 1.00). Furthermore, with the formation of the CdSe1-xTex crown region, we observed substantially improved photoluminescence quantum yields (up to ∼95%) owing to the suppression of nonradiative hole trap sites. Also, we found significantly increased fluorescence lifetimes from ∼49 up to ∼326 ns with increasing Te content in the crown, suggesting the transition from quasi-type-II to type-II electronic structure. With their tunable excitonic properties, this novel material presented here will find ubiquitous use in various efficient light-emitting and -harvesting applications.Item Open Access Colloidal nanocrystals embedded in macrocrystals: methods and applications(American Chemical Society, 2016) Adam, M.; Gaponik N.; Eychmüller A.; Erdem, T.; Soran-Erdem, Z.; Demir, Hilmi VolkanColloidal semiconductor nanocrystals have gained substantial interest as spectrally tunable and bright fluorophores for color conversion and enrichment solids. However, they suffer from limitations in processing their solutions as well as efficiency degradation in solid films. As a remedy, embedding them into crystalline host matrixes has stepped forward for superior photostability, thermal stability, and chemical durability while simultaneously sustaining high quantum yields. Here, we review three basic methods for loading the macrocrystals with nanocrystals, namely relatively slow direct embedding, as well as accelerated methods of vacuum-assisted and liquid-liquid diffusion-assisted crystallization. We discuss photophysical properties of the resulting composites and present their application in light-emitting diodes as well as their utilization for plasmonics and excitonics. Finally, we present a future outlook for the science and technology of these materials.Item Open Access Colloidal nanocrystals for quality lighting and displays: milestones and recent developments(Walter de Gruyter GmbH, 2016) Erdem, T.; Demir, Hilmi VolkanRecent advances in colloidal synthesis of nanocrystals have enabled high-quality high-efficiency light-emitting diodes, displays with significantly broader color gamut, and optically-pumped lasers spanning the whole visible regime. Here we review these colloidal platforms covering the milestone studies together with recent developments. In the review, we focus on the devices made of colloidal quantum dots (nanocrystals), colloidal quantum rods (nanorods), and colloidal quantum wells (nanoplatelets) as well as those of solution processed perovskites and phosphor nanocrystals. The review starts with an introduction to colloidal nanocrystal photonics emphasizing the importance of colloidal materials for light-emitting devices. Subsequently, we continue with the summary of important reports on light-emitting diodes, in which colloids are used as the color converters and then as the emissive layers in electroluminescent devices. Also, we review the developments in color enrichment and electroluminescent displays. Next, we present a summary of important reports on the lasing of colloidal semiconductors. Finally, we summarize and conclude the review presenting a future outlook.Item Open Access Color enrichment solids of spectrally pure colloidal quantum wells for wide color Span in displays(Wiley-VCH Verlag GmbH & Co. KGaA, 2022-07-18) Erdem, T.; Soran Erdem, Z.; Işık, Furkan; Shabani, Farzan; Yazici, A. F.; Mutlugün, E.; Gaponik, N.; Demir, H. V.Colloidal quantum wells (CQWs) are excellent candidates for lighting and display applications owing to their narrow emission linewidths (<30 nm). However, realizing their efficient and stable light-emitting solids remains a challenge. To address this problem, stable, efficient solids of CQWs incorporated into crystal matrices are shown. Green-emitting CdSe/CdS core/crown and red-emitting CdSe/CdS core/shell CQWs wrapped into these crystal solids are employed as proof-of-concept demonstrations of light-emitting diode (LED) integration targeting a wide color span in display backlighting. The quantum yield of the green- and red-emitting CQW-containing solids of sucrose reach ≈20% and ≈55%, respectively, while emission linewidths and peak wavelengths remain almost unaltered. Furthermore, sucrose matrix preserves ≈70% and ≈45% of the initial emission intensity of the green- and red-emitting CQWs after >60 h, respectively, which is ≈4× and ≈2× better than the drop-casted CQW films and reference (KCl) host. Color-converting LEDs of these green- and red-emitting CQWs in sucrose possess luminous efficiencies 122 and 189 lm W−1elect, respectively. With the liquid crystal display filters, this becomes 39 and 86 lm W−1elect, respectively, providing with a color gamut 25% broader than the National Television Standards Committee standard. These results prove that CQW solids enable efficient and stable color converters for display and lighting applications.Item Open Access Color science of nanocrystal quantum dots for lighting and displays(De Gruyter, 2013-02) Erdem, T.; Demir, Hilmi VolkanColloidal nanocrystals of semiconductor quantum dots (QDs) are gaining prominence among the optoelectronic materials in the photonics industry. Among their many applications, their use in artificial lighting and displays has attracted special attention thanks to their high efficiency and narrow emission band, enabling spectral purity and fine tunability. By employing QDs in color-conversion LEDs, it is possible to simultaneously accomplish successful color rendition of the illuminated objects together with a good spectral overlap between the emission spectrum of the device and the sensitivity of the human eye, in addition to a warm white color, in contrast to other conventional sources such as incandescent and fluorescent lamps, and phosphor-based LEDs, which cannot achieve all of these properties at the same time. In this review, we summarize the color science of QDs for lighting and displays, and present the recent developments in QD-integrated LEDs and display research. First, we start with a general introduction to color science, photometry, and radiometry. After presenting an overview of QDs, we continue with the spectral designs of QD-integrated white LEDs that have led to efficient lighting for indoor and outdoor applications. Subsequently, we discuss QD color-conversion LEDs and displays as proof-of-concept applications - a new paradigm in artificial lighting and displays. Finally, we conclude with a summary of research opportunities and challenges along with a future outlook.Item Open Access Color-enrichment semiconductor nanocrystals for biorhythm-friendly backlighting(De Gruyter, 2018) Erdem, T.; Demir, Hilmi VolkanNanocrystals (NCs) offer great opportunities for developing novel light-emitting devices possessing superior properties such as high quality indoor lighting, efficient outdoor lighting, and display backlighting with increased color definition. The narrow-band emission spectra of these materials also offer opportunities to protect the human daily biological rhythm against the adverse effects of display backlighting. For this purpose, here we address this problem using color converting NCs and analyzed the effect of the NC integrated color converting light-emitting diode (NC LED) backlight spectra on the human circadian rhythm. We employed the three existing models including the circadian light, the melanopic sensitivity function, and the circadian effect factor by simultaneously satisfying the National Television Standards Committee (NTSC) requirements. The results show that NC LED backlighting exhibits (i) 33% less disruption on the circadian cycle if the same color gamut of the commercially available YAG:Ce LED is targeted and (ii) 34% wider color gamut while causing 4.1% weaker disruption on the circadian rhythm compared to YAG:Ce LED backlight if the NTSC color gamut is fully reproduced. Furthermore, we found out that blue and green emission peaks have to be located at 465 with 30 nm bandwidth and at 535 nm with 20 nm bandwidth, respectively, for a circadian rhythm friendly design while the red component offers flexibility around the peak emission wavelength at 636 nm as opposed to the requirements of quality indoor lighting. These design considerations introduced as a new design perspective for the displays of future will help avoiding the disruption of the human circadian rhythm.Item Open Access Combined filtering and key-frame reduction of motion capture data with application to 3DTV(WSCG, 2006-01-02) Önder, Onur; Erdem, Ç.; Erdem, T.; Güdükbay, Uğur; Özgüç, BülentA new method for combined filtering and key-frame reduction of motion capture data is proposed. Filtering of motion capture data is necessary to eliminate any jitter introduced by a motion capture system. Key-frame reduction, on the other hand, allows animators to easily edit motion data by representing animation curves with a significantly smaller number of key frames. The proposed technique achieves key frame reduction and jitter removal simultaneously by fitting a Hermite curve to motion capture data using dynamic programming. Copyright © UNION Agency - Science Press.Item Open Access Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (11 2-2) semipolar versus (0001) polar planes(AIP Publishing, 2014) Ji Y.; Liu W.; Erdem, T.; Chen R.; Tan S.T.; Zhang Z.-H.; Ju, Z.; Zhang X.; Sun, H.; Sun, X. W.; Zhao Y.; DenBaars, S. P.; Nakamura, S.; Demir, Hilmi VolkanThe characteristics of electroluminescence (EL) and photoluminescence (PL) emission from GaN light-emitting diodes (LEDs) grown on (11 (2) over bar2) semipolar plane and (0001) polar plane have been comparatively investigated. Through different bias-dependent shifting trends observed from the PL and time-resolved PL spectra (TRPL) for the two types of LEDs, the carrier dynamics within the multiple quantum wells (MQWs) region is systematically analyzed and the distinct field-dependent emission kinetics are revealed. Moreover, the polarization induced internal electric field has been deduced for each of the LEDs. The relatively stable emission behavior observed in the semipolar LED is attributed to the smaller polarization induced internal electric field. The study provides meaningful insight for the design of quantum well (QW) structures with high radiative recombination rates.Item Open Access Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes(Optical Society of America, 2012-01-30) Erdem, T.; Nizamoglu, S.; Demir, Hilmi VolkanWe present power conversion efficiency (PCE) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum dots (QDs) achieving an averaged color rendering index of >= 90 (with R9 at least 70), a luminous efficacy of optical radiation of >= 380 lm/W-opt a correlated color temperature of <= 4000 K, and a chromaticity difference dC <0.0054. We computationally find that the device LE levels of 100, 150, and 200 lm/W-elect can be achieved with QD quantum efficiency of 43%, 61%, and 80% in film, respectively, using state-of-the-art blue LED chips (81.3% PCE). Furthermore, our computational analyses suggest that QD-LEDs can be both photometrically and electrically more efficient than phosphor based LEDs when state-of-the-art QDs are used. (C) 2012 Optical Society of AmericaItem Open Access Construction of multi-layered white emitting organic nanoparticles by clicking polymers(Royal Society of Chemistry, 2015) Keita, H.; Güzeltürk, B.; Pennakalathil, J.; Erdem, T.; Demir, Hilmi Volkan; Tuncel, D.A series of blue, green and red emitting polymers that are appropriately functionalized with alkyne and azide functional groups have been prepared and clicked together to construct bi-layered and tri-layered white emitting core-shell type nanoparticles. Here the use of these organic hetero-nanoparticles as colour converters to realize a white light-emitting diode platform acquiring a colour quality comparable to the existing phosphor-based ones was also demonstrated. © The Royal Society of Chemistry.Item Open Access Continuously tunable emission in inverted type ‐ I CdS/CdSe core/crown semiconductor nanoplatelets(Wiley, 2015-07-15) Delikanlı, S.; Güzeltürk, B.; Hernandez - Martinez, P. L.; Erdem, T.; Keleştemur, Y.; Olutas M.; Akgül, M. Z.; Demir, Hilmi VolkanThe synthesis and unique tunable optical properties of core/crown nanoplatelets having an inverted Type-I heterostructure are presented. Here, colloidal 2D CdS/CdSe heteronanoplatelets are grown with thickness of four monolayers using seed-mediated method. In this work, it is shown that the emission peak of the resulting CdS/CdSe heteronanoplatelets can be continuously spectrally tuned between the peak emission wavelengths of the core only CdS nanoplatelets (421 nm) and CdSe nanoplatelets (515 nm) having the same vertical thickness. In these inverted Type-I nanoplatelets, the unique continuous tunable emission is enabled by adjusting the lateral width of the CdSe crown, having a narrower bandgap, around the core CdS nanoplatelet, having a wider bandgap, as a result of the controlled lateral quantum confinement in the crown region additional to the pure vertical confinement. As a proof-of-concept demonstration, a white light generation is shown by using color conversion with these CdS/CdSe heteronanoplatelets having finely tuned thin crowns, resulting in a color rendering index of 80. The robust control of the electronic structure in such inverted Type-I heteronanoplatelets achieved by tailoring the lateral extent of the crown coating around the core template presents a new enabling pathway for bandgap engineering in solution-processed quantum wells.Item Open Access Energy-saving quality road lighting with colloidal quantum dot nanophosphors(Walter de Gruyter GmbH, 2014) Erdem, T.; Kelestemur, Y.; Soran-Erdem, Z.; Ji, Y.; Demir, Hilmi VolkanHere the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting. © 2014 Science Wise Publishing & De Gruyter 2014.Item Open Access Excitonic improvement of colloidal nanocrystals in salt powder matrix for quality lighting and color enrichment(OSA - The Optical Society, 2016) Erdem, T.; Soran-Erdem, Z.; Kelestemur, Y.; Gaponik, N.; Demir, Hilmi VolkanHere we report excitonic improvement in color-converting colloidal nanocrystal powders enabled by co-integrating nonpolar greenand red-emitting nanocrystal energy transfer pairs into a single LiCl salt matrix. This leads to nonradiative energy transfer (NRET) between the cointegrated nanocrystals in the host matrix. Here we systematically studied the resulting NRET process by varying donor and acceptor concentrations in the powders. We observed that NRET is a strong function of both of the nanocrystal concentrations and that NRET efficiency increases with increasing acceptor concentration. Nevertheless, with increasing donor concentration in the powders, NRET efficiency was found to first increase (up to a maximum level of 53.9%) but then to decrease. As a device demonstrator, we employed these NRET-improved nanocrystal powders as color-converters on blue light-emitting diodes (LEDs), with the resulting hybrid LED exhibiting a luminous efficiency >70 lm/Welect . The proposed excitonic nanocrystal powders potentially hold great promise for quality lighting and color enrichment applications.Item Open Access High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots(Optical Society of America, 2011) Nizamoglu, S.; Erdem, T.; Demir, Hilmi VolkanWe propose and demonstrate single-chip white-light-emitting diodes (WLEDs) integrated with semiconductor nanophosphors of colloidal quantum dots for high scotopic/photopic (S/P) ratio. These color conversion WLEDs achieve S/P ratios over 3.00, which exceeds the current limit of 2.50 in common lighting technologies, while sustaining sufficient levels of color rendering index. (C) 2011 Optical Society of AmericaItem Open Access High-stability, high-efficiency organic monoliths made of oligomer nanoparticles wrapped in organic matrix(American Chemical Society, 2016) Soran-Erdem Z.; Erdem, T.; Gungor K.; Pennakalathil, J.; Tuncel, D.; Demir, Hilmi VolkanOligomer nanoparticles (OL NPs) have been considered unsuitable for solid-state lighting due to their low quantum yields and low temperature stability of their emission. Here, we address these problems by forming highly emissive and stable OL NPs solids to make them applicable in lighting. For this purpose, we incorporated OL NPs into sucrose matrix and then prepared their all-organic monoliths. We show that wrapping the OL NPs in sucrose significantly increases their quantum yield up to 44%, while the efficiency of their dispersion and direct solid-film remain only at ∼6%. We further showed ∼3-fold improved temperature stability of OL NP emission within these monoliths. Our experiments revealed that a physical passivation mechanism is responsible from these improvements. As a proof-of-concept demonstration, we successfully employed these high-stability, high-efficiency monoliths as color converters on a blue LED chip. Considering the improved optical features, low cost, and simplicity of the presented methodology, we believe that this study holds great promise for a ubiquitous use of organic OL NPs in lighting and possibly in other photonic applications.Item Open Access Highly luminescent CB[7]-based conjugated polyrotaxanes embedded into crystalline matrices(Wiley-VCH Verlag, 2017) Erdem, T.; Idris, M.; Demir, Hilmi Volkan; Tuncel, D.π-Conjugated polymers suffer from low quantum yields (QYs) due to chain–chain interactions. Furthermore, their emission in solid films is significantly quenched due to aggregation leading further decrease in QY. These are the two main issues of these materials hampering their widespread use in optoelectronic devices. To address these issues, here the backbone of poly(9,9′-bis(6″-(N,N,N-trimethylammonium)hexyl)fluorene-alt-co-thiophenelene) is isolated by threading with cucurbit[7]uril (CB7). Subsequently, the conjugated polyrotaxanes are incorporated into organic crystalline matrices to obtain highly efficient color-converting solids suitable for solid-state lighting. Upon threading the polymer backbone with CB7s, although the QY of the resulting polyrotaxane in solution state increases, the quenching problem in their solid state is not completely tackled. To solve this problem, these conjugated polyrotaxanes are embedded into various crystalline matrices and their remarkably high QYs (>50%) in the solution are successfully maintained in the solid state. To demonstrate the suitability of these aforementioned materials for solid-state lighting, a proof-of-concept light-emitting diode is constructed by employing their powders as color converters.Item Open Access Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires(American Institute of Physics, 2014) Uran, C.; Erdem, T.; Guzelturk, B.; Perkgöz, N. K.; Jun, S.; Jang, E.; Demir, Hilmi VolkanIn this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15: 1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.Item Open Access Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot-salt mixed crystals(American Chemical Society, 2015) Adam, M.; Erdem, T.; Stachowski, G.M.; Soran-Erdem Z.; Lox, J. F. L.; Bauer, C.; Poppe, J.; Demir, Hilmi Volkan; Gaponik N.; Eychmüller A.In this work, a model-experimental feedback approach is developed and applied to fabricate high-quality, warm-white light-emitting diodes based on quantum dots (QDs) as color-conversion materials. Owing to their unique chemical and physical properties, QDs offer huge potential for lighting applications. Nevertheless, both emission stability and processability of the QDs are limited upon usage from solution. Incorporating them into a solid ionic matrix overcomes both of these drawbacks, while preserving the initial optical properties. Here borax (Na2B4O7·10H2O) is used as a host matrix because of its lower solubility and thereby reduced ionic strength in water in comparison with NaCl. This guarantees the stability of high-quality CdSe/ZnS QDs in the aqueous phase during crystallization and results in a 3.4 times higher loading amount of QDs within the borax crystals compared to NaCl. All steps from the synthesis via mixed crystal preparation to the warm-white LED preparation are verified by applying the model-experimental feedback, in which experimental data and numerical results provide feedback to each other recursively. These measures are taken to ensure a high luminous efficacy of optical radiation (LER) and a high color rendering index (CRI) of the final device as well as a correlated color temperature (CCT) comparable to an incandescent bulb. By doing so, a warm-white LED with a LER of 341 lm/Wopt, a CCT of 2720 K and a CRI of 91.1 is produced. Finally, we show that the emission stability of the QDs within the borax crystals on LEDs driven at high currents is significantly improved. These findings indicate that the proposed warm-white light-emitting diodes based on QDs-in-borax hold great promise for quality lighting. © 2015 American Chemical Society.Item Open Access Introduction(Springer, Singapore, 2019) Erdem, T.; Demir, Hilmi VolkanHere we briefly emphasize the importance of lighting for our daily lives as well as its role in energy consumption. We very briefly introduce the problems that need to be addressed and finally summarize the contents of this brief.Item Open Access Keyframe reduction techniques for motion capture data(IEEE, 2008-05) Önder, Onur; Güdükbay, Uğur; Özgüç, Bülent; Erdem, T.; Erdem, Ç.; Özkan, M.Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods. ©2008 IEEE.