Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes

Date
2012-01-30
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Optics Express
Print ISSN
1094-4087
Electronic ISSN
Publisher
Optical Society of America
Volume
20
Issue
3
Pages
3275 - 3295
Language
English
Type
Article
Journal Title
Journal ISSN
Volume Title
Series
Abstract

We present power conversion efficiency (PCE) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum dots (QDs) achieving an averaged color rendering index of >= 90 (with R9 at least 70), a luminous efficacy of optical radiation of >= 380 lm/W-opt a correlated color temperature of <= 4000 K, and a chromaticity difference dC <0.0054. We computationally find that the device LE levels of 100, 150, and 200 lm/W-elect can be achieved with QD quantum efficiency of 43%, 61%, and 80% in film, respectively, using state-of-the-art blue LED chips (81.3% PCE). Furthermore, our computational analyses suggest that QD-LEDs can be both photometrically and electrically more efficient than phosphor based LEDs when state-of-the-art QDs are used. (C) 2012 Optical Society of America

Course
Other identifiers
Book Title
Keywords
Nanocrystals, Efficacy
Citation
Published Version (Please cite this version)