High-stability, high-efficiency organic monoliths made of oligomer nanoparticles wrapped in organic matrix

Date

2016

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

ACS Nano

Print ISSN

1936-0851

Electronic ISSN

1936-086X

Publisher

American Chemical Society

Volume

10

Issue

5

Pages

5333 - 5339

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
17
downloads

Series

Abstract

Oligomer nanoparticles (OL NPs) have been considered unsuitable for solid-state lighting due to their low quantum yields and low temperature stability of their emission. Here, we address these problems by forming highly emissive and stable OL NPs solids to make them applicable in lighting. For this purpose, we incorporated OL NPs into sucrose matrix and then prepared their all-organic monoliths. We show that wrapping the OL NPs in sucrose significantly increases their quantum yield up to 44%, while the efficiency of their dispersion and direct solid-film remain only at ∼6%. We further showed ∼3-fold improved temperature stability of OL NP emission within these monoliths. Our experiments revealed that a physical passivation mechanism is responsible from these improvements. As a proof-of-concept demonstration, we successfully employed these high-stability, high-efficiency monoliths as color converters on a blue LED chip. Considering the improved optical features, low cost, and simplicity of the presented methodology, we believe that this study holds great promise for a ubiquitous use of organic OL NPs in lighting and possibly in other photonic applications.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)