Browsing by Author "Cambazoglu, B. B."
Now showing 1 - 19 of 19
- Results Per Page
- Sort Options
Item Open Access Adaptive decomposition and remapping algorithms for object-space-parallel direct volume rendering of unstructured grids(Academic Press, 2007-01) Aykanat, Cevdet; Cambazoglu, B. B.; Findik, F.; Kurc, T.Object space (OS) parallelization of an efficient direct volume rendering algorithm for unstructured grids on distributed-memory architectures is investigated. The adaptive OS decomposition problem is modeled as a graph partitioning (GP) problem using an efficient and highly accurate estimation scheme for view-dependent node and edge weighting. In the proposed model, minimizing the cutsize corresponds to minimizing the parallelization overhead due to the data communication and redundant computation/storage while maintaining the GP balance constraint corresponds to maintaining the computational load balance in parallel rendering. A GP-based, view-independent cell clustering scheme is introduced to induce more tractable view-dependent computational graphs for successive visualizations. As another contribution, a graph-theoretical remapping model is proposed as a solution to the general remapping problem and is used in minimization of the cell-data migration overhead. The remapping tool RM-MeTiS is developed by modifying the GP tool MeTiS and is used in partitioning the remapping graphs. Experiments are conducted using benchmark datasets on a 28-node PC cluster to evaluate the performance of the proposed models. © 2006 Elsevier Inc. All rights reserved.Item Open Access Architecture of a grid-enabled Web search engine(Elsevier Ltd, 2007) Cambazoglu, B. B.; Karaca, E.; Kucukyilmaz T.; Turk, A.; Aykanat, CevdetSearch Engine for South-East Europe (SE4SEE) is a socio-cultural search engine running on the grid infrastructure. It offers a personalized, on-demand, country-specific, category-based Web search facility. The main goal of SE4SEE is to attack the page freshness problem by performing the search on the original pages residing on the Web, rather than on the previously fetched copies as done in the traditional search engines. SE4SEE also aims to obtain high download rates in Web crawling by making use of the geographically distributed nature of the grid. In this work, we present the architectural design issues and implementation details of this search engine. We conduct various experiments to illustrate performance results obtained on a grid infrastructure and justify the use of the search strategy employed in SE4SEE. © 2006 Elsevier Ltd. All rights reserved.Item Open Access Cache-based query processing for search engines(Association for Computing Machinery, 2012-11-01) Cambazoglu, B. B.; Altıngovde, I. S.; Ozcan, R.; Ulusoy, ÖzgürIn practice, a search engine may fail to serve a query due to various reasons such as hardware/network failures, excessive query load, lack of matching documents, or service contract limitations (e.g., the query rate limits for third-party users of a search service). In this kind of scenarios, where the backend search system is unable to generate answers to queries, approximate answers can be generated by exploiting the previously computed query results available in the result cache of the search engine.In this work, we propose two alternative strategies to implement this cache-based query processing idea. The first strategy aggregates the results of similar queries that are previously cached in order to create synthetic results for new queries. The second strategy forms an inverted index over the textual information (i.e., query terms and result snippets) present in the result cache and uses this index to answer new queries. Both approaches achieve reasonable result qualities compared to processing queries with an inverted index built on the collection. © 2012 ACM.Item Open Access Chat mining: predicting user and message attributes in computer-mediated communication(Elsevier Ltd, 2008-07) Kucukyilmaz T.; Cambazoglu, B. B.; Aykanat, Cevdet; Can, F.The focus of this paper is to investigate the possibility of predicting several user and message attributes in text-based, real-time, online messaging services. For this purpose, a large collection of chat messages is examined. The applicability of various supervised classification techniques for extracting information from the chat messages is evaluated. Two competing models are used for defining the chat mining problem. A term-based approach is used to investigate the user and message attributes in the context of vocabulary use while a style-based approach is used to examine the chat messages according to the variations in the authors' writing styles. Among 100 authors, the identity of an author is correctly predicted with 99.7% accuracy. Moreover, the reverse problem is exploited, and the effect of author attributes on computer-mediated communications is discussed. © 2008 Elsevier Ltd. All rights reserved.Item Open Access Clustering spatial networks for aggregate query processing: a hypergraph approach(Elsevier Ltd, 2008-03) Demir, E.; Aykanat, Cevdet; Cambazoglu, B. B.In spatial networks, clustering adjacent data to disk pages is highly likely to reduce the number of disk page accesses made by the aggregate network operations during query processing. For this purpose, different techniques based on the clustering graph model are proposed in the literature. In this work, we show that the state-of-the-art clustering graph model is not able to correctly capture the disk access costs of aggregate network operations. Moreover, we propose a novel clustering hypergraph model that correctly captures the disk access costs of these operations. The proposed model aims to minimize the total number of disk page accesses in aggregate network operations. Based on this model, we further propose two adaptive recursive bipartitioning schemes to reduce the number of allocated disk pages while trying to minimize the number of disk page accesses. We evaluate our clustering hypergraph model and recursive bipartitioning schemes on a wide range of road network datasets. The results of the conducted experiments show that the proposed model is quite effective in reducing the number of disk accesses incurred by the network operations. © 2007 Elsevier B.V. All rights reserved.Item Open Access Data-parallel web crawling models(Springer, 2004) Cambazoglu, B. B.; Turk, A.; Aykanat, CevdetThe need to quickly locate, gather, and store the vast amount of material in the Web necessitates parallel computing. In this paper, we propose two models, based on multi-constraint graph-partitioning, for efficient data-parallel Web crawling. The models aim to balance the amount of data downloaded and stored by each processor as well as balancing the number of page requests made by the processors. The models also minimize the total volume of communication during the link exchange between the processors. To evaluate the performance of the models, experimental results are presented on a sample Web repository containing around 915,000 pages. © Springer-Verlag 2004.Item Open Access Document replication strategies for geographically distributed web search engines(Elsevier Ltd., 2013) Kayaaslan, E.; Cambazoglu, B. B.; Aykanat, CevdetLarge-scale web search engines are composed of multiple data centers that are geographically distant to each other. Typically, a user query is processed in a data center that is geographically close to the origin of the query, over a replica of the entire web index. Compared to a centralized, single-center search engine, this architecture offers lower query response times as the network latencies between the users and data centers are reduced. However, it does not scale well with increasing index sizes and query traffic volumes because queries are evaluated on the entire web index, which has to be replicated and maintained in all data centers. As a remedy to this scalability problem, we propose a document replication framework in which documents are selectively replicated on data centers based on regional user interests. Within this framework, we propose three different document replication strategies, each optimizing a different objective: reducing the potential search quality loss, the average query response time, or the total query workload of the search system. For all three strategies, we consider two alternative types of capacity constraints on index sizes of data centers. Moreover, we investigate the performance impact of query forwarding and result caching. We evaluate our strategies via detailed simulations, using a large query log and a document collection obtained from the Yahoo! web search engine. (C) 2012 Elsevier Ltd. All rights reserved.Item Open Access Energy-price-driven query processing in multi-center web search engines(IEEE, 2011-07) Kayaaslan, Enver; Cambazoglu, B. B.; Blanco, R.; Junqueira, F. P.; Aykanat, CevdetConcurrently processing thousands of web queries, each with a response time under a fraction of a second, necessitates maintaining and operating massive data centers. For large-scale web search engines, this translates into high energy consumption and a huge electric bill. This work takes the challenge to reduce the electric bill of commercial web search engines operating on data centers that are geographically far apart. Based on the observation that energy prices and query workloads show high spatio-temporal variation, we propose a technique that dynamically shifts the query workload of a search engine between its data centers to reduce the electric bill. Experiments on real-life query workloads obtained from a commercial search engine show that significant financial savings can be achieved by this technique.Item Open Access A five-level static cache architecture for web search engines(Elsevier Ltd, 2012) Ozcan, R.; Altingovde, I. S.; Cambazoglu, B. B.; Junqueira, F. P.; Ulusoy, ÖzgürCaching is a crucial performance component of large-scale web search engines, as it greatly helps reducing average query response times and query processing workloads on backend search clusters. In this paper, we describe a multi-level static cache architecture that stores five different item types: query results, precomputed scores, posting lists, precomputed intersections of posting lists, and documents. Moreover, we propose a greedy heuristic to prioritize items for caching, based on gains computed by using items' past access frequencies, estimated computational costs, and storage overheads. This heuristic takes into account the inter-dependency between individual items when making its caching decisions, i.e.; after a particular item is cached, gains of all items that are affected by this decision are updated. Our simulations under realistic assumptions reveal that the proposed heuristic performs better than dividing the entire cache space among particular item types at fixed proportions. © 2010 Elsevier Ltd. All rights reserved.Item Open Access Hypergraph-partitioning-based remapping models for image-space-parallel direct volume rendering of unstructured grids(Institute of Electrical and Electronics Engineers, 2007-07) Cambazoglu, B. B.; Aykanat, CevdetIn this work, image-space-parallel direct volume rendering (DVR) of unstructured grids is investigated for distributed-memory architectures. A hypergraph-partitioning-based model is proposed for the adaptive screen partitioning problem in this context. The proposed model aims to balance the rendering loads of processors while trying to minimize the amount of data replication. In the parallel DVR framework we adopted, each data primitive is statically owned by its home processor, which is responsible from replicating its primitives on other processors. Two appropriate remapping models are proposed by enhancing the above model for use within this framework. These two remapping models aim to minimize the total volume of communication in data replication while balancing the rendering loads of processors. Based on the proposed models, a parallel DVR algorithm is developed. The experiments conducted on a PC cluster show that the proposed remapping models achieve better speedup values compared to the remapping models previously suggested for image-space-parallel DVR. © 2007 IEEE.Item Open Access Image-space-parallel direct volume rendering on a cluster of PCs(Springer, 2003) Cambazoglu, B. B.; Aykanat, CevdetAn image-space-parallel, ray-casting-based direct volume rendering algorithm is developed for rendering of unstructured data grids on distributed-memory parallel architectures. For efficiency in screen workload calculations, a graph-partitioning-based tetrahedral cell clustering technique is used. The main contribution of the work is at the proposed model, which formulates the screen partitioning problem as a hypergraph partitioning problem. It is experimentally verified on a PC cluster that, compared to the previously suggested jagged partitioning approach, the proposed approach results in both better load balancing in local rendering and less communication overhead in data migration phases. © Springer-Verlag Berlin Heidelberg 2003.Item Open Access Improving the performance of independent task assignment heuristics Minmin, Maxmin and Sufferage(Institute of Electrical and Electronics Engineers, 2014) Tabak, E. K.; Cambazoglu, B. B.; Aykanat, CevdetMinMin, MaxMin, and Sufferage are constructive heuristics that are widely and successfully used in assigning independent tasks to processors in heterogeneous computing systems. All three heuristics are known to run in O(K N2) time in assigning N tasks to K processors. In this paper, we propose an algorithmic improvement that asymptotically decreases the running time complexity of MinMin to O(K N log N) without affecting its solution quality. Furthermore, we combine the newly proposed MinMin algorithm with MaxMin as well as Sufferage, obtaining two hybrid algorithms. The motivation behind the former hybrid algorithm is to address the drawback of MaxMin in solving problem instances with highly skewed cost distributions while also improving the running time performance of MaxMin. The latter hybrid algorithm improves the running time performance of Sufferage without degrading its solution quality. The proposed algorithms are easy to implement and we illustrate them through detailed pseudocodes. The experimental results over a large number of real-life data sets show that the proposed fast MinMin algorithm and the proposed hybrid algorithms perform significantly better than their traditional counterparts as well as more recent state-of-the-art assignment heuristics. For the large data sets used in the experiments, MinMin, MaxMin, and Sufferage, as well as recent state-of-the-art heuristics, require days, weeks, or even months to produce a solution, whereas all of the proposed algorithms produce solutions within only two or three minutes. © 2013 IEEE.Item Open Access A link-based storage scheme for efficient aggregate query processing on clustered road networks(Elsevier Ltd, 2010) Demir, E.; Aykanat, Cevdet; Cambazoglu, B. B.The need to have efficient storage schemes for spatial networks is apparent when the volume of query processing in some road networks (e.g., the navigation systems) is considered. Specifically, under the assumption that the road network is stored in a central server, the adjacent data elements in the network must be clustered on the disk in such a way that the number of disk page accesses is kept minimal during the processing of network queries. In this work, we introduce the link-based storage scheme for clustered road networks and compare it with the previously proposed junction-based storage scheme. In order to investigate the performance of aggregate network queries in clustered road networks, we extend our recently proposed clustering hypergraph model from junction-based storage to link-based storage. We propose techniques for additional storage savings in bidirectional networks that make the link-based storage scheme even more preferable in terms of the storage efficiency. We evaluate the performance of our link-based storage scheme against the junction-based storage scheme both theoretically and empirically. The results of the experiments conducted on a wide range of road network datasets show that the link-based storage scheme is preferable in terms of both storage and query processing efficiency. © 2009 Elsevier B.V. All rights reserved.Item Open Access A machine learning approach for result caching in web search engines(Elsevier, 2017) Kucukyilmaz T.; Cambazoglu, B. B.; Aykanat, Cevdet; Baeza-Yates R.A commonly used technique for improving search engine performance is result caching. In result caching, precomputed results (e.g., URLs and snippets of best matching pages) of certain queries are stored in a fast-access storage. The future occurrences of a query whose results are already stored in the cache can be directly served by the result cache, eliminating the need to process the query using costly computing resources. Although other performance metrics are possible, the main performance metric for evaluating the success of a result cache is hit rate. In this work, we present a machine learning approach to improve the hit rate of a result cache by facilitating a large number of features extracted from search engine query logs. We then apply the proposed machine learning approach to static, dynamic, and static-dynamic caching. Compared to the previous methods in the literature, the proposed approach improves the hit rate of the result cache up to 0.66%, which corresponds to 9.60% of the potential room for improvement. © 2017 Elsevier LtdItem Open Access Multi-level direct K-way hypergraph partitioning with multiple constraints and fixed vertices(Academic Press, 2008-05) Aykanat, Cevdet; Cambazoglu, B. B.; Uçar, B.K-way hypergraph partitioning has an ever-growing use in parallelization of scientific computing applications. We claim that hypergraph partitioning with multiple constraints and fixed vertices should be implemented using direct K-way refinement, instead of the widely adopted recursive bisection paradigm. Our arguments are based on the fact that recursive-bisection-based partitioning algorithms perform considerably worse when used in the multiple constraint and fixed vertex formulations. We discuss possible reasons for this performance degradation. We describe a careful implementation of a multi-level direct K-way hypergraph partitioning algorithm, which performs better than a well-known recursive-bisection-based partitioning algorithm in hypergraph partitioning with multiple constraints and fixed vertices. We also experimentally show that the proposed algorithm is effective in standard hypergraph partitioning. © 2007 Elsevier Inc. All rights reserved.Item Open Access Performance of query processing implementations in ranking-based text retrieval systems using inverted indices(Elsevier Ltd, 2006-07) Cambazoglu, B. B.; Aykanat, CevdetSimilarity calculations and document ranking form the computationally expensive parts of query processing in ranking-based text retrieval. In this work, for these calculations, 11 alternative implementation techniques are presented under four different categories, and their asymptotic time and space complexities are investigated. To our knowledge, six of these techniques are not discussed in any other publication before. Furthermore, analytical experiments are carried out on a 30 GB document collection to evaluate the practical performance of different implementations in terms of query processing time and space consumption. Advantages and disadvantages of each technique are illustrated under different querying scenarios, and several experiments that investigate the scalability of the implementations are presented. © 2005 Elsevier Ltd. All rights reserved.Item Open Access Second chance: a hybrid approach for dynamic result caching and prefetching in search engines(Association for Computing Machinery, 2013-12) Ozcan, R.; Altingovde, I. S.; Cambazoglu, B. B.; Ulusoy, O.Web search engines are known to cache the results of previously issued queries. The stored results typically contain the document summaries and some data that is used to construct the final search result page returned to the user. An alternative strategy is to store in the cache only the result document IDs, which take much less space, allowing results of more queries to be cached. These two strategies lead to an interesting trade-off between the hit rate and the average query response latency. In this work, in order to exploit this trade-off, we propose a hybrid result caching strategy where a dynamic result cache is split into two sections: an HTML cache and a docID cache. Moreover, using a realistic cost model, we evaluate the performance of different result prefetching strategies for the proposed hybrid cache and the baseline HTML-only cache. Finally, we propose a machine learning approach to predict singleton queries, which occur only once in the query stream. We show that when the proposed hybrid result caching strategy is coupled with the singleton query predictor, the hit rate is further improved. © 2013 ACM.Item Open Access Site-based partitioning and repartitioning techniques for parallel pagerank computation(Institute of Electrical and Electronics Engineers, 2011-05) Cevahir, A.; Aykanat, Cevdet; Turk, A.; Cambazoglu, B. B.The PageRank algorithm is an important component in effective web search. At the core of this algorithm are repeated sparse matrix-vector multiplications where the involved web matrices grow in parallel with the growth of the web and are stored in a distributed manner due to space limitations. Hence, the PageRank computation, which is frequently repeated, must be performed in parallel with high-efficiency and low-preprocessing overhead while considering the initial distributed nature of the web matrices. Our contributions in this work are twofold. We first investigate the application of state-of-the-art sparse matrix partitioning models in order to attain high efficiency in parallel PageRank computations with a particular focus on reducing the preprocessing overhead they introduce. For this purpose, we evaluate two different compression schemes on the web matrix using the site information inherently available in links. Second, we consider the more realistic scenario of starting with an initially distributed data and extend our algorithms to cover the repartitioning of such data for efficient PageRank computation. We report performance results using our parallelization of a state-of-the-art PageRank algorithm on two different PC clusters with 40 and 64 processors. Experiments show that the proposed techniques achieve considerably high speedups while incurring a preprocessing overhead of several iterations (for some instances even less than a single iteration) of the underlying sequential PageRank algorithm. © 2011 IEEE.Item Open Access A term-based inverted index partitioning model for efficient distributed query processing(Association for Computing Machinery, 2013) Cambazoglu, B. B.; Kayaaslan, E.; Jonassen, S.; Aykanat, CevdetIn a shared-nothing, distributed text retrieval system, queries are processed over an inverted index that is partitioned among a number of index servers. In practice, the index is either document-based or term-based partitioned. This choice is made depending on the properties of the underlying hardware infrastructure, query traffic distribution, and some performance and availability constraints. In query processing on retrieval systems that adopt a term-based index partitioning strategy, the high communication overhead due to the transfer of large amounts of data from the index servers forms a major performance bottleneck, deteriorating the scalability of the entire distributed retrieval system. In this work, to alleviate this problem, we propose a novel inverted index partitioning model that relies on hypergraph partitioning. In the proposed model, concurrently accessed index entries are assigned to the same index servers, based on the inverted index access patterns extracted from the past query logs. The model aims tominimize the communication overhead that will be incurred by future queries while maintaining the computational load balance among the index servers. We evaluate the performance of the proposed model through extensive experiments using a real-life text collection and a search query sample. Our results show that considerable performance gains can be achieved relative to the term-based index partitioning strategies previously proposed in literature. In most cases, however, the performance remains inferior to that attained by document-based partitioning. © 2013 ACM.