A term-based inverted index partitioning model for efficient distributed query processing

Series

Abstract

In a shared-nothing, distributed text retrieval system, queries are processed over an inverted index that is partitioned among a number of index servers. In practice, the index is either document-based or term-based partitioned. This choice is made depending on the properties of the underlying hardware infrastructure, query traffic distribution, and some performance and availability constraints. In query processing on retrieval systems that adopt a term-based index partitioning strategy, the high communication overhead due to the transfer of large amounts of data from the index servers forms a major performance bottleneck, deteriorating the scalability of the entire distributed retrieval system. In this work, to alleviate this problem, we propose a novel inverted index partitioning model that relies on hypergraph partitioning. In the proposed model, concurrently accessed index entries are assigned to the same index servers, based on the inverted index access patterns extracted from the past query logs. The model aims tominimize the communication overhead that will be incurred by future queries while maintaining the computational load balance among the index servers. We evaluate the performance of the proposed model through extensive experiments using a real-life text collection and a search query sample. Our results show that considerable performance gains can be achieved relative to the term-based index partitioning strategies previously proposed in literature. In most cases, however, the performance remains inferior to that attained by document-based partitioning. © 2013 ACM.

Source Title

ACM Transactions on the Web

Publisher

Association for Computing Machinery

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English