Multi-level direct K-way hypergraph partitioning with multiple constraints and fixed vertices

Date

2008-05

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Parallel and Distributed Computing

Print ISSN

0743-7315

Electronic ISSN

Publisher

Academic Press

Volume

68

Issue

5

Pages

609 - 625

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

K-way hypergraph partitioning has an ever-growing use in parallelization of scientific computing applications. We claim that hypergraph partitioning with multiple constraints and fixed vertices should be implemented using direct K-way refinement, instead of the widely adopted recursive bisection paradigm. Our arguments are based on the fact that recursive-bisection-based partitioning algorithms perform considerably worse when used in the multiple constraint and fixed vertex formulations. We discuss possible reasons for this performance degradation. We describe a careful implementation of a multi-level direct K-way hypergraph partitioning algorithm, which performs better than a well-known recursive-bisection-based partitioning algorithm in hypergraph partitioning with multiple constraints and fixed vertices. We also experimentally show that the proposed algorithm is effective in standard hypergraph partitioning. © 2007 Elsevier Inc. All rights reserved.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)