A five-level static cache architecture for web search engines
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Caching is a crucial performance component of large-scale web search engines, as it greatly helps reducing average query response times and query processing workloads on backend search clusters. In this paper, we describe a multi-level static cache architecture that stores five different item types: query results, precomputed scores, posting lists, precomputed intersections of posting lists, and documents. Moreover, we propose a greedy heuristic to prioritize items for caching, based on gains computed by using items' past access frequencies, estimated computational costs, and storage overheads. This heuristic takes into account the inter-dependency between individual items when making its caching decisions, i.e.; after a particular item is cached, gains of all items that are affected by this decision are updated. Our simulations under realistic assumptions reveal that the proposed heuristic performs better than dividing the entire cache space among particular item types at fixed proportions. © 2010 Elsevier Ltd. All rights reserved.