Fabrication of electrospun Eugenol/Cyclodextrin inclusion complex nanofibrous webs for enhanced antioxidant property, water solubility, and high temperature stability

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
89
downloads

Citation Stats

Series

Abstract

In this study, inclusion complexes (IC) of three cyclodextrin derivatives (HP-β-CD, HP-γ-CD, and M-β-CD) with eugenol (essential oil compound) were formed in highly concentrated aqueous solutions and then transformed into self-standing functional nanofibrous webs by electrospinning. The improved aqueous solubility of eugenol was confirmed by phase solubility diagrams, in addition, the phase solubility tests also revealed 1:1 molar ratio complexation between host:guest molecules; CD:eugenol. Even though eugenol has a volatile nature, a large amount of eugenol (∼70-95%) was preserved in eugenol/cyclodextrin inclusion complex nanofibrous webs (eugenol/CD/IC-NW). Moreover, enhanced thermal stability of eugenol was recorded for eugenol/CD/IC-NW (up to ∼310 °C) when compared to pure form of eugenol (up to ∼200 °C). The eugenol/CD/IC-NW exhibited fast dissolving behavior in water, contrary to poorly water-soluble eugenol. It was observed that the complexation between M-β-CD and eugenol was the strongest when compared to other two host CD molecules (HP-β-CD and HP-γ-CD) for eugenol/CD/IC-NW samples. The electrospun eugenol/CD/IC-NW samples have shown enhanced antioxidant activity compared to pure form of eugenol. In summary, cyclodextrin inclusion complexes of essential oil compounds, such as eugenol, in the form of self-standing nanofibrous webs may have potentials for food and oral-care applications due to their particularly large surface area along with fast-dissolving character, improved water solubility, high temperature stability, and enhanced antioxidant activity.

Source Title

Journal of Agricultural and Food Chemistry

Publisher

American Chemical Society

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English