Nanomaterials for neural regeneration

buir.contributor.authorGüler, Mustafa O.
dc.citation.epage58en_US
dc.citation.spage33en_US
dc.contributor.authorSever, Melikeen_US
dc.contributor.authorMammadov, Büşraen_US
dc.contributor.authorGeçer, Mevhibeen_US
dc.contributor.authorGüler, Mustafa O.en_US
dc.contributor.authorTekinay, Ayşe B.en_US
dc.contributor.editorGüler, Mustafa O.
dc.contributor.editorTekinay, Ayşe B.
dc.date.accessioned2019-04-18T05:55:32Z
dc.date.available2019-04-18T05:55:32Z
dc.date.issued2016-03-11en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.descriptionChapter 3en_US
dc.description.abstractThe central nervous system (CNS) consists of a dense network of cells leaving a smaller volume for the extracellular matrix (ECM) components (10‐20% for the brain unlike most other tissues (Cragg, 1979)). The reaction of the nervous tissue to any injury leading to scar tissue formation acts as a barrier for regeneration in the CNS, while it supports regeneration in the peripheral nervous system (PNS). By mimicking several unique characteristics of the natural environment of cells, synthetic materials for neural regeneration can be improved chemically and biologically. Especially bioactivation of materials can be achieved by addition of small chemical moieties to the scaffold particularly found in specific tissues or addition of biologically active molecules derived from natural ECM. The ECM‐derived short peptides are promising candidates to be presented as functional domains on the scaffold surface for use in neural regeneration.en_US
dc.description.provenanceSubmitted by Taner Korkmaz (tanerkorkmaz@bilkent.edu.tr) on 2019-04-18T05:55:32Z No. of bitstreams: 1 Nanomaterials_for_Neural_Regeneration.pdf: 149397 bytes, checksum: ad6332ddaee129a55e726145b8c59f71 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-04-18T05:55:32Z (GMT). No. of bitstreams: 1 Nanomaterials_for_Neural_Regeneration.pdf: 149397 bytes, checksum: ad6332ddaee129a55e726145b8c59f71 (MD5) Previous issue date: 2016-03-11en
dc.identifier.doi10.1002/9781118987483.ch3en_US
dc.identifier.doi10.1002/9781118987483en_US
dc.identifier.eisbn9781118987483
dc.identifier.isbn9781118987452
dc.identifier.urihttp://hdl.handle.net/11693/50839
dc.language.isoEnglishen_US
dc.publisherJohn Wiley & Sonsen_US
dc.relation.ispartofTherapeutic nanomaterialsen_US
dc.relation.isversionofhttps://doi.org/10.1002/9781118987483.ch3en_US
dc.relation.isversionofhttps://doi.org/10.1002/9781118987483en_US
dc.subjectBiological functionalizationen_US
dc.subjectCellular behavioren_US
dc.subjectCentral nervous systemen_US
dc.subjectChemical functionalizationen_US
dc.subjectElectrical conductivityen_US
dc.subjectExtracellular matrixen_US
dc.subjectNanomaterialsen_US
dc.subjectNeural regenerationen_US
dc.subjectPeripheral nervous systemen_US
dc.titleNanomaterials for neural regenerationen_US
dc.typeBook Chapteren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanomaterials_for_Neural_Regeneration.pdf
Size:
145.9 KB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: