Learning the optimum as a Nash equilibrium

dc.citation.epage499en_US
dc.citation.issueNumber4en_US
dc.citation.spage483en_US
dc.citation.volumeNumber24en_US
dc.contributor.authorÖzyıldırım, S.en_US
dc.contributor.authorAlemdar, N. M.en_US
dc.date.accessioned2016-02-08T10:38:37Z
dc.date.available2016-02-08T10:38:37Z
dc.date.issued2000en_US
dc.departmentDepartment of Managementen_US
dc.departmentDepartment of Economicsen_US
dc.description.abstractThis paper shows the computational benefits of a game theoretic approach to optimization of high dimensional control problems. A dynamic noncooperative game framework is adopted to partition the control space and to search the optimum as the equilibrium of a k-person dynamic game played by k-parallel genetic algorithms. When there are multiple inputs, we delegate control authority over a set of control variables exclusively to one player so that k artificially intelligent players explore and communicate to learn the global optimum as the Nash equilibrium. In the case of a single input, each player's decision authority becomes active on exclusive sets of dates so that k GAs construct the optimal control trajectory as the equilibrium of evolving best-to-date responses. Sample problems are provided to demonstrate the gains in computational speed and accuracy. © 2000 Elsevier Science B.V.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:38:37Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2000en
dc.identifier.doi10.1016/S0165-1889(99)00012-3en_US
dc.identifier.issn0165-1889
dc.identifier.urihttp://hdl.handle.net/11693/25064
dc.language.isoEnglishen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttps://doi.org/10.1016/S0165-1889(99)00012-3en_US
dc.source.titleJournal of Economic Dynamics and Controlen_US
dc.subjectLearningen_US
dc.subjectNash equilibriumen_US
dc.subjectOptimal controlen_US
dc.subjectParallel genetic algorithmsen_US
dc.titleLearning the optimum as a Nash equilibriumen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Learning the optimum as a Nash equilibrium.pdf
Size:
232.3 KB
Format:
Adobe Portable Document Format
Description:
Full printable version