Learning the optimum as a Nash equilibrium
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This paper shows the computational benefits of a game theoretic approach to optimization of high dimensional control problems. A dynamic noncooperative game framework is adopted to partition the control space and to search the optimum as the equilibrium of a k-person dynamic game played by k-parallel genetic algorithms. When there are multiple inputs, we delegate control authority over a set of control variables exclusively to one player so that k artificially intelligent players explore and communicate to learn the global optimum as the Nash equilibrium. In the case of a single input, each player's decision authority becomes active on exclusive sets of dates so that k GAs construct the optimal control trajectory as the equilibrium of evolving best-to-date responses. Sample problems are provided to demonstrate the gains in computational speed and accuracy. © 2000 Elsevier Science B.V.