Microheater-integrated spectrally selective multiband mid-infrared nanoemitter for on-chip optical multigas sensing
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Traditional optical gas sensors often require multiple components such as broadband infrared sources, detectors, and band-pass filters to detect various target gases, resulting in bulky and expensive sensor designs. A streamlined optical gas-sensing platform utilizing a narrowband thermal emitter with a spectrally selective response, capable of accommodating various target gases, has the potential to supplant current bulky designs. Through the on-chip integration of a narrowband metamaterial perfect absorber with a microelectromechanical system (MEMS) heater, a selective infrared source emitter could be designed. In this paper, a multiband metamaterial absorber with resonance modes located at different gas absorption signatures is developed for optical multi-gas-sensing applications. The proposed nanoemitter supports penta-band light absorption through the simultaneous excitation of phononic modes (within the hexagonal boron nitride (hBN) topmost layer) and plasmonic modes (with the spectrally selective underlying metal-insulator-metal (MIM) absorber stack). It achieves five near-perfect sharp absorption resonance peaks compatible with the H2S, CH4, CO2, NO, and SO2 gas absorption signatures in the mid-infrared (MIR) spectral range. This spectrally engineered multiwavelength absorption behavior is achieved by simultaneously coupling the optical phonons (OPhs) and the plasmonic modes in the vicinity of the OPh region of hBN and by exciting plasmonic modes with the help of the spacer (ZnTe: zinc telluride) and the metallic nanogratings. Finally, this low-cost and efficient penta-band absorber is combined with a MEMS-based microheater. The microheater uses a Peano-shaped configuration to provide a highly uniform surface temperature, which is crucial for accurate and reliable gas sensing. The proposed platform demonstrates excellent potential in terms of cost-effectiveness, source-free operation, and suitability for multi-gas-sensing platforms.