Electron transport properties in Al0.25Ga0.75N/AlN/GaN heterostructures with different InGaN back barrier layers and GaN channel thicknesses grown by MOCVD

Date

2012-01-24

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physica Status Solidi (A) Applications and Materials Science

Print ISSN

1862-6300

Electronic ISSN

Publisher

Wiley

Volume

209

Issue

3

Pages

434 - 438

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The electron transport properties in Al0.25Ga0.75N/AlN/GaN/InxGa1-xN/GaN double heterostructures with various indium compositions and GaN channel thicknesses were investigated. Samples were grown on c-plane sapphire substrates by MOCVD and evaluated using variable temperature Hall effect measurements. In order to understand the observed transport properties, various scattering mechanisms, such as acoustic phonon, optical phonon, interface roughness, background impurity, and alloy disorder, were included in the theoretical model that was applied to the temperature-dependent mobility data. It was found that low temperature (T < 160 K) mobility is limited only by the interface roughness scattering mechanism, while at high temperatures (T > 160 K), optical phonon scattering is the dominant scattering mechanism for AlGaN/AlN/GaN/InGaN/GaN heterostructures. The higher mobility of the structures with InGaN back barriers was attributed to the large conduction band discontinuity obtained at the channel/buffer interface, which leads to better electron confinement.

Course

Other identifiers

Book Title

Citation