Modeling and analysis of a MEMS vibrating ring gyroscope subject to imperfections

buir.contributor.authorHosseini-Pishrobat, Mehran
buir.contributor.authorTatar, Erdinç
buir.contributor.orcidHosseini-Pishrobat, Mehran|0000-0002-5866-5131
buir.contributor.orcidTatar, Erdinç|0000-0002-6093-4994
dc.citation.epage560en_US
dc.citation.issueNumber4en_US
dc.citation.spage546en_US
dc.citation.volumeNumber31en_US
dc.contributor.authorHosseini-Pishrobat, Mehran
dc.contributor.authorTatar, Erdinç
dc.date.accessioned2023-02-28T10:00:32Z
dc.date.available2023-02-28T10:00:32Z
dc.date.issued2022-05-06
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractWe present a new mathematical model for a vibrating ring gyroscope (VRG) in the presence of imperfections, namely, structural defects and material anisotropy. As a novelty, we calculate the mode shapes of the internal suspension structure to enable a more accurate and modular analysis of the VRG’s mass and stiffness distributions. Solving the associated eigenvalue problem shows that imperfections result in the frequency split between the gyroscope’s operating mode shapes, rotating their orientation with respect to the nominal drive and sense axes. We then use perturbation analysis to solve the VRG’s equations of motion and analyze the quadrature error that arises from frequency/damping mismatch between the mode shapes. We use our model to detail the various effects of the etching-related undercuts, structural uncertainties, and Young’s modulus anisotropy–in the form of suitable space-dependent functions–on the mode shapes and the quadrature error for the first time. The results reveal that rings are robust against imperfection, while the straight beams used in the suspension system are most likely responsible for the frequency split and quadrature error. For example, 50 nm (0.5%) width variation in a beam that connects the VRG’s suspension to an anchored internal structure leads to 4700°/s quadrature error. To validate our modeling, using the experimental data from a fabricated 59 kHz VRG, we provide rigorous, comparative simulations against the finite element method (FEM).en_US
dc.description.provenanceSubmitted by Ayça Nur Sezen (ayca.sezen@bilkent.edu.tr) on 2023-02-28T10:00:32Z No. of bitstreams: 1 Modeling_and_analysis_of_a_MEMS_vibrating_ring_gyroscope_subject_to_imperfections.pdf: 3294946 bytes, checksum: 7ae119fdce7febacfdc1ece5c0e7dc79 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-28T10:00:32Z (GMT). No. of bitstreams: 1 Modeling_and_analysis_of_a_MEMS_vibrating_ring_gyroscope_subject_to_imperfections.pdf: 3294946 bytes, checksum: 7ae119fdce7febacfdc1ece5c0e7dc79 (MD5) Previous issue date: 2022-05-06en
dc.identifier.doi10.1109/JMEMS.2022.3170121en_US
dc.identifier.eissn1941-0158
dc.identifier.issn1057-7157
dc.identifier.urihttp://hdl.handle.net/11693/111896
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttps://doi.org/10.1109/JMEMS.2022.3170121en_US
dc.source.titleJournal of Microelectromechanical Systemsen_US
dc.subjectFrequency spliten_US
dc.subjectImperfectionsen_US
dc.subjectVibrating ringen_US
dc.subjectMEMS gyroscopeen_US
dc.subjectQuadrature erroren_US
dc.titleModeling and analysis of a MEMS vibrating ring gyroscope subject to imperfectionsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Modeling_and_analysis_of_a_MEMS_vibrating_ring_gyroscope_subject_to_imperfections.pdf
Size:
3.14 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: