Trion-mediated förster resonance energy transfer and optical gating effect in WS2/hBN/MoSe2 heterojunction

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage13477en_US
dc.citation.issueNumber10en_US
dc.citation.spage13470en_US
dc.citation.volumeNumber14en_US
dc.contributor.authorHu, Z.
dc.contributor.authorHernández-Martínez, P. L.
dc.contributor.authorLiu, X.
dc.contributor.authorAmara, M. R.
dc.contributor.authorZhao, W.
dc.contributor.authorWatanabe, K.
dc.contributor.authorTaniguchi, T.
dc.contributor.authorDemir, Hilmi Volkan
dc.date.accessioned2021-02-12T13:22:09Z
dc.date.available2021-02-12T13:22:09Z
dc.date.issued2020
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractvan der Waals two-dimensional layered heterostructures have recently emerged as a platform, where the interlayer couplings give rise to interesting physics and multifunctionalities in optoelectronics. Such couplings can be rationally controlled by dielectric, separation, and stacking angles, which affect the overall charge or energy-transfer processes, and emergent potential landscape for twistronics. Herein, we report the efficient Förster resonance energy transfer (FRET) in WS2/ hBN/MoSe2 heterostructure, probed by both steady-state and timeresolved optical spectroscopy. We clarified the evolution behavior of the electron−hole pairs and free electrons from the trions, that is, ∼59.9% of the electron−hole pairs could transfer into MoSe2 by FRET channels (∼38 ps) while the free electrons accumulate at the WS2/hBN interface to photogate MoSe2. This study presents a clear picture of the FRET process in two-dimensional transition-metal dichalcogenides’ heterojunctions, which establishes the scientific foundation for developing the related heterojunction optoelectronic devices.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-12T13:22:09Z No. of bitstreams: 1 Trion-mediated_förster_resonance_energy_transfer_and_optical_gating_effect_in_WS2hBNMoSe2_heterojunction.pdf: 3780792 bytes, checksum: 2718eb31c76c7996376f78bcbe4bef60 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-12T13:22:09Z (GMT). No. of bitstreams: 1 Trion-mediated_förster_resonance_energy_transfer_and_optical_gating_effect_in_WS2hBNMoSe2_heterojunction.pdf: 3780792 bytes, checksum: 2718eb31c76c7996376f78bcbe4bef60 (MD5) Previous issue date: 2020-09en
dc.identifier.doi10.1021/acsnano.0c05447en_US
dc.identifier.issn1936-0851
dc.identifier.urihttp://hdl.handle.net/11693/55122
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1021/acsnano.0c05447en_US
dc.source.titleACS Nanoen_US
dc.subject2D materialsen_US
dc.subjectTransition metal dichalcogenidesen_US
dc.subjectTrionen_US
dc.subjectvan der Waals heterostructureen_US
dc.subjectFörster resonance energy transferen_US
dc.subjectPhotogatingen_US
dc.subjectOptical spectroscopy
dc.titleTrion-mediated förster resonance energy transfer and optical gating effect in WS2/hBN/MoSe2 heterojunctionen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Trion_mediated_förster_resonance_energy_transfer_and_optical_gating_effect_in_WS2hBNMoSe2_heterojunction.pdf
Size:
3.69 MB
Format:
Adobe Portable Document Format
Description:
View / Download