Trion-mediated förster resonance energy transfer and optical gating effect in WS2/hBN/MoSe2 heterojunction

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

ACS Nano

Print ISSN

1936-0851

Electronic ISSN

Publisher

American Chemical Society

Volume

14

Issue

10

Pages

13470 - 13477

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
4
downloads

Series

Abstract

van der Waals two-dimensional layered heterostructures have recently emerged as a platform, where the interlayer couplings give rise to interesting physics and multifunctionalities in optoelectronics. Such couplings can be rationally controlled by dielectric, separation, and stacking angles, which affect the overall charge or energy-transfer processes, and emergent potential landscape for twistronics. Herein, we report the efficient Förster resonance energy transfer (FRET) in WS2/ hBN/MoSe2 heterostructure, probed by both steady-state and timeresolved optical spectroscopy. We clarified the evolution behavior of the electron−hole pairs and free electrons from the trions, that is, ∼59.9% of the electron−hole pairs could transfer into MoSe2 by FRET channels (∼38 ps) while the free electrons accumulate at the WS2/hBN interface to photogate MoSe2. This study presents a clear picture of the FRET process in two-dimensional transition-metal dichalcogenides’ heterojunctions, which establishes the scientific foundation for developing the related heterojunction optoelectronic devices.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)