Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: fast-dissolving and enhanced water-solubility of sulfisoxazole
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In this study, our aim was to develop solid drug-cyclodextrin inclusion complex system having nanofibrous morphology in order to have fast-dissolving property and enhanced water-solubility of poorly water-soluble drug. Here, we prepared a highly concentrated aqueous solution of inclusion complex between sulfisoxazole and sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD, Captisol®), and then, without using any polymeric matrix, the electrospinning of sulfisoxazole/SBE7-β-CD-IC nanofibers was performed in order to obtain free-standing and handy nanofibrous web. As a control sample, nanofibers from pure SBE7-β-CD was also electrospun and free-standing nanofibrous web was obtained. The SEM imaging revealed that the bead-free and uniform nanofiber morphology with the average fiber diameter (AFD) of 650 ± 290 nm for sulfisoxazole/SBE7-β-CD-IC NF and 890 ± 415 nm for pure SBE7-β-CD NF was obtained. The inclusion complex formation between sulfisoxazole and SBE7-β-CD in sulfisoxazole/SBE7-β-CD-IC NF sample was confirmed by 1H NMR, TGA, DSC, XRD and FTIR analyses. Due to the combined advantage of cyclodextrin inclusion complexation and high surface area of electrospun nanofibers, fast-dissolving property with enhanced water-solubility was successfully achieved for sulfisoxazole/SBE7-β-CD-IC NF. Our findings suggest that electrospun nanofibers/nanowebs from CD-IC of poorly water-soluble drugs may offer applicable approaches for high water-solubility and fast-dissolving tablet formulations for drug delivery systems.