Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: fast-dissolving and enhanced water-solubility of sulfisoxazole

Date

2017-10

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
25
downloads

Citation Stats

Series

Abstract

In this study, our aim was to develop solid drug-cyclodextrin inclusion complex system having nanofibrous morphology in order to have fast-dissolving property and enhanced water-solubility of poorly water-soluble drug. Here, we prepared a highly concentrated aqueous solution of inclusion complex between sulfisoxazole and sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD, Captisol®), and then, without using any polymeric matrix, the electrospinning of sulfisoxazole/SBE7-β-CD-IC nanofibers was performed in order to obtain free-standing and handy nanofibrous web. As a control sample, nanofibers from pure SBE7-β-CD was also electrospun and free-standing nanofibrous web was obtained. The SEM imaging revealed that the bead-free and uniform nanofiber morphology with the average fiber diameter (AFD) of 650 ± 290 nm for sulfisoxazole/SBE7-β-CD-IC NF and 890 ± 415 nm for pure SBE7-β-CD NF was obtained. The inclusion complex formation between sulfisoxazole and SBE7-β-CD in sulfisoxazole/SBE7-β-CD-IC NF sample was confirmed by 1H NMR, TGA, DSC, XRD and FTIR analyses. Due to the combined advantage of cyclodextrin inclusion complexation and high surface area of electrospun nanofibers, fast-dissolving property with enhanced water-solubility was successfully achieved for sulfisoxazole/SBE7-β-CD-IC NF. Our findings suggest that electrospun nanofibers/nanowebs from CD-IC of poorly water-soluble drugs may offer applicable approaches for high water-solubility and fast-dissolving tablet formulations for drug delivery systems.

Source Title

International Journal of Pharmaceutics

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English