Metamaterial-based wireless strain sensors

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage011106-3en_US
dc.citation.issueNumber1en_US
dc.citation.spage011106-1en_US
dc.citation.volumeNumber95en_US
dc.contributor.authorMelik, R.en_US
dc.contributor.authorUnal, E.en_US
dc.contributor.authorPerkgoz, N. K.en_US
dc.contributor.authorPuttlitz, C.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2016-02-08T10:03:27Z
dc.date.available2016-02-08T10:03:27Z
dc.date.issued2009-07-07en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractWe proposed and demonstrated metamaterial-based strain sensors that are highly sensitive to mechanical deformation. Their resonance frequency shift is correlated with the surface strain of our test material and the strain data are reported telemetrically. These metamaterial sensors are better than traditional radio-frequency (rf) structures in sensing for providing resonances with high quality factors and large transmission dips. Using split ring resonators (SRRs), we achieve lower resonance frequencies per unit area compared to other rf structures, allowing for bioimplant sensing in soft tissue (e.g., fracture healing). In 5×5 SRR architecture, our wireless sensors yield high sensitivity (109 kHz/kgf, or 5.148 kHz/microstrain) with low nonlinearity error (<200 microstrain).en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:03:27Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009en
dc.identifier.doi10.1063/1.3162336en_US
dc.identifier.issn0003-6951
dc.identifier.urihttp://hdl.handle.net/11693/22689
dc.language.isoEnglishen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.3162336en_US
dc.source.titleApplied Physics Lettersen_US
dc.subjectFracture healingen_US
dc.subjectHigh quality factorsen_US
dc.subjectHigh sensitivityen_US
dc.subjectHighly sensitiveen_US
dc.subjectMechanical deformationen_US
dc.subjectMicro-strainen_US
dc.subjectNon-linearity errorsen_US
dc.subjectPer uniten_US
dc.subjectRadio frequenciesen_US
dc.subjectResonance frequenciesen_US
dc.subjectResonance frequency shiften_US
dc.subjectRF structureen_US
dc.subjectSoft tissueen_US
dc.subjectSplit ring resonatoren_US
dc.subjectStrain dataen_US
dc.subjectStrain sensorsen_US
dc.subjectSurface strainsen_US
dc.subjectTest materialsen_US
dc.subjectWireless sensoren_US
dc.subjectMetamaterialsen_US
dc.subjectNatural frequenciesen_US
dc.subjectRadio broadcastingen_US
dc.subjectRadio transmissionen_US
dc.subjectRing gagesen_US
dc.subjectSensorsen_US
dc.titleMetamaterial-based wireless strain sensorsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Metamaterial-based wireless strain sensors.pdf
Size:
364.96 KB
Format:
Adobe Portable Document Format
Description:
Full printable version