Single nozzle electrospinning promoted hierarchical shell wall structured zinc oxide hollow tubes for water remediation
buir.contributor.author | Balusamy, Brabu | |
buir.contributor.author | Senthamizhan, Anitha | |
buir.contributor.author | Çelebioğlu, Aslı | |
buir.contributor.author | Uyar, Tamer | |
buir.contributor.orcid | Çelebioğlu, Aslı|0000-0002-5563-5746 | |
buir.contributor.orcid | Uyar, Tamer|0000-0002-3989-4481 | |
dc.citation.epage | 171 | en_US |
dc.citation.spage | 162 | en_US |
dc.citation.volumeNumber | 593 | en_US |
dc.contributor.author | Balusamy, Brabu | |
dc.contributor.author | Senthamizhan, Anitha | |
dc.contributor.author | Çelebioğlu, Aslı | |
dc.contributor.author | Uyar, Tamer | |
dc.date.accessioned | 2022-02-18T08:17:48Z | |
dc.date.available | 2022-02-18T08:17:48Z | |
dc.date.issued | 2021-03-09 | |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Nanotechnology Research Center (NANOTAM) | en_US |
dc.description.abstract | Hypothesis Electrospun metal oxide hollow tubes are of great interest owing to their unique structural advantages compared to solid nanofibers. Although intensive research on preparation of hollow tubes have been devoted, formation of hierarchical shells remains a significant challenge. Experiments Herein, we demonstrate the fabrication of highly uniform, reproducible and industrially feasible ZnO hollow tubes (ZHT) with two-level hierarchical shells via a simple and versatile single-nozzle electrospinning strategy coupled with subsequent controlled thermal treatment. Findings The morphological investigation reveals that the hollow tubes built from nanostructures which has unique surface structure on their wall. The mechanism by which the composite fibers transferred to hollow tubes is primarily based on the evaporation rate of the polymeric template. Notably, tuning the heating rate from 5 °C to 50 °C/min possess adverse effect on formation of hollow tubes, thus subsequently produced ZnO nanoplates (ZNP). The comparative photocatalytic analysis emphasized that ZHT shows higher photocatalytic activity than ZNP. This finding has made an evident that the inherent abundant defects in the electrospun derived nanostructures are not only sufficient for improving the photocatalytic activity. Studies on bacterial growth inhibition showcased a superior bactericidal effect against Staphylococcus aureus and Escherichia coli implying its potentiality for disinfecting the bacteria from water. | en_US |
dc.description.provenance | Submitted by Esma Aytürk (esma.babayigit@bilkent.edu.tr) on 2022-02-18T08:17:48Z No. of bitstreams: 1 Single_nozzle_electrospinning_promoted_hierarchical_shell_wall_structured_zinc_oxide_hollow_tubes_for_water_remediation.pdf: 3683028 bytes, checksum: 626c780dfc906f51d53fb3a392a0e20f (MD5) | en |
dc.description.provenance | Made available in DSpace on 2022-02-18T08:17:48Z (GMT). No. of bitstreams: 1 Single_nozzle_electrospinning_promoted_hierarchical_shell_wall_structured_zinc_oxide_hollow_tubes_for_water_remediation.pdf: 3683028 bytes, checksum: 626c780dfc906f51d53fb3a392a0e20f (MD5) Previous issue date: 2021-03-09 | en |
dc.embargo.release | 2023-03-09 | |
dc.identifier.doi | 10.1016/j.jcis.2021.02.089 | en_US |
dc.identifier.eissn | 1095-7103 | |
dc.identifier.issn | 0021-9797 | |
dc.identifier.uri | http://hdl.handle.net/11693/77493 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | https://doi.org/10.1016/j.jcis.2021.02.089 | en_US |
dc.source.title | Journal of Colloid and Interface Science | en_US |
dc.subject | Electrospinning | en_US |
dc.subject | Zinc oxide | en_US |
dc.subject | Hollow tube | en_US |
dc.subject | Photocatalysis | en_US |
dc.subject | Bactericidal | en_US |
dc.subject | Ecotoxicity | en_US |
dc.subject | Water remediation | en_US |
dc.title | Single nozzle electrospinning promoted hierarchical shell wall structured zinc oxide hollow tubes for water remediation | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Single_nozzle_electrospinning_promoted_hierarchical_shell_wall_structured_zinc_oxide_hollow_tubes_for_water_remediation.pdf
- Size:
- 3.51 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: