Single nozzle electrospinning promoted hierarchical shell wall structured zinc oxide hollow tubes for water remediation

Available
The embargo period has ended, and this item is now available.

Date

2021-03-09

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Colloid and Interface Science

Print ISSN

0021-9797

Electronic ISSN

1095-7103

Publisher

Elsevier

Volume

593

Issue

Pages

162 - 171

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
5
downloads

Series

Abstract

Hypothesis Electrospun metal oxide hollow tubes are of great interest owing to their unique structural advantages compared to solid nanofibers. Although intensive research on preparation of hollow tubes have been devoted, formation of hierarchical shells remains a significant challenge. Experiments Herein, we demonstrate the fabrication of highly uniform, reproducible and industrially feasible ZnO hollow tubes (ZHT) with two-level hierarchical shells via a simple and versatile single-nozzle electrospinning strategy coupled with subsequent controlled thermal treatment. Findings The morphological investigation reveals that the hollow tubes built from nanostructures which has unique surface structure on their wall. The mechanism by which the composite fibers transferred to hollow tubes is primarily based on the evaporation rate of the polymeric template. Notably, tuning the heating rate from 5 °C to 50 °C/min possess adverse effect on formation of hollow tubes, thus subsequently produced ZnO nanoplates (ZNP). The comparative photocatalytic analysis emphasized that ZHT shows higher photocatalytic activity than ZNP. This finding has made an evident that the inherent abundant defects in the electrospun derived nanostructures are not only sufficient for improving the photocatalytic activity. Studies on bacterial growth inhibition showcased a superior bactericidal effect against Staphylococcus aureus and Escherichia coli implying its potentiality for disinfecting the bacteria from water.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)