Protein-releasing conductive anodized alumina membranes for nerve-interface materials

Date

2016

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Materials Science and Engineering C: Materials for Biological Applications

Print ISSN

0928-4931

Electronic ISSN

Publisher

Elsevier Ltd

Volume

67

Issue

Pages

590 - 598

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart.

Course

Other identifiers

Book Title

Citation