Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films
dc.citation.epage | 1407 | en_US |
dc.citation.issueNumber | 12 | en_US |
dc.citation.spage | 1403 | en_US |
dc.citation.volumeNumber | 1 | en_US |
dc.contributor.author | Bakan, G. | en_US |
dc.contributor.author | Ayas S. | en_US |
dc.contributor.author | Ozgur E. | en_US |
dc.contributor.author | Celebi, K. | en_US |
dc.contributor.author | Dana, A. | en_US |
dc.date.accessioned | 2018-04-12T10:50:22Z | |
dc.date.available | 2018-04-12T10:50:22Z | |
dc.date.issued | 2016-11 | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.description.abstract | The thermal tunability of the optical and electrical properties of phase-change materials has enabled the decades-old rewritable optical data storage and the recently commercialized phase-change memory devices. Recently, phase-change materials, in particular, Ge2Sb2Te5 (GST), have been considered for other thermally configurable photonics applications, such as active plasmonic surfaces. Here, we focus on nonplasmonic field enhancement and demonstrate the use of the phase-change materials in ultrasensitive infrared absorption spectroscopy platforms employing interference-based uniform field enhancement. The studied structures consist of patternless thin GST and metal films, enabling simple and large-area fabrication on rigid and flexible substrates. Crystallization of the as-fabricated amorphous GST layer by annealing tunes (redshifts) the field-enhancement wavelength range. The surfaces are tested with ultrathin chemical and biological probe materials. The measured absorption signals are found to be comparable or superior to the values reported for the ultrasensitive infrared absorption spectroscopy platforms based on plasmonic field-enhancement. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:50:22Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1021/acssensors.6b00591 | en_US |
dc.identifier.issn | 2379-3694 | |
dc.identifier.uri | http://hdl.handle.net/11693/36712 | |
dc.language.iso | English | en_US |
dc.publisher | American Chemical Society | en_US |
dc.relation.isversionof | https://doi.org/10.1021/acssensors.6b00591 | en_US |
dc.source.title | ACS Sensors | en_US |
dc.subject | GeSbTe | en_US |
dc.subject | Infrared absorption spectroscopy | en_US |
dc.subject | Interference coatings | en_US |
dc.subject | Phase-change | en_US |
dc.subject | Sensing | en_US |
dc.title | Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Thermally Tunable Ultrasensitive Infrared Absorption Spectroscopy Platforms Based on Thin Phase-Change Films.pdf
- Size:
- 1.06 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version