Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Attention Stats
Series
Abstract
The thermal tunability of the optical and electrical properties of phase-change materials has enabled the decades-old rewritable optical data storage and the recently commercialized phase-change memory devices. Recently, phase-change materials, in particular, Ge2Sb2Te5 (GST), have been considered for other thermally configurable photonics applications, such as active plasmonic surfaces. Here, we focus on nonplasmonic field enhancement and demonstrate the use of the phase-change materials in ultrasensitive infrared absorption spectroscopy platforms employing interference-based uniform field enhancement. The studied structures consist of patternless thin GST and metal films, enabling simple and large-area fabrication on rigid and flexible substrates. Crystallization of the as-fabricated amorphous GST layer by annealing tunes (redshifts) the field-enhancement wavelength range. The surfaces are tested with ultrathin chemical and biological probe materials. The measured absorption signals are found to be comparable or superior to the values reported for the ultrasensitive infrared absorption spectroscopy platforms based on plasmonic field-enhancement.