Seed layer assisted hydrothermal deposition of low-resistivity ZnO thin films

buir.contributor.authorOkyay, Ali Kemal
dc.citation.epage804en_US
dc.citation.issueNumber14en_US
dc.citation.spage799en_US
dc.citation.volumeNumber2en_US
dc.contributor.authorChubenko, E.en_US
dc.contributor.authorBondarenko, V.en_US
dc.contributor.authorGhobadi, Amiren_US
dc.contributor.authorUlusoy, Gamzeen_US
dc.contributor.authorTopallı, Kağanen_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.date.accessioned2018-04-12T11:43:15Z
dc.date.available2018-04-12T11:43:15Z
dc.date.issued2017en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractIn this work, we describe the combination of hydrothermal and atomic layer deposition (ALD) for growing low-resistivity ZnO polycrystalline continuous films. The effect of the thickness of ALD seed layers on the morphology of the hydrothermal ZnO films was studied. It was shown that ZnO films hydrothermally deposited on very thin seed layer consist of separate nanorods but in the case of 20 nm seed layer ZnO films transform to uniform continuous layers comprising of closely packed vertically aligned crystallites. Photoluminescence spectra were shown to exhibit broad band behavior in the visible range, corresponding to radiative recombination processes via oxygen defects of ZnO crystalline lattice, and narrow band in the UV region, associated with band-to-band recombination processes. It was shown that the resistivity of the obtained ZnO films is decreased gradually with the increase of ZnO films thickness and determined by the presence of crystal lattice defects in the seed layer.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:43:15Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1557/adv.2017.150en_US
dc.identifier.issn2059-8521
dc.identifier.urihttp://hdl.handle.net/11693/37539
dc.language.isoEnglishen_US
dc.publisherMaterials Research Societyen_US
dc.relation.isversionofhttps://doi.org/10.1557/adv.2017.150en_US
dc.source.titleMRS Advancesen_US
dc.subjectAtomic layer depositionen_US
dc.subjectHydrothermalen_US
dc.subjectLuminescenceen_US
dc.subjectDefectsen_US
dc.subjectDepositionen_US
dc.subjectFilm growthen_US
dc.subjectII-VI semiconductorsen_US
dc.subjectLuminescenceen_US
dc.subjectMetallic filmsen_US
dc.subjectNanorodsen_US
dc.subjectPhotoluminescenceen_US
dc.subjectThin filmsen_US
dc.subjectZinc oxideen_US
dc.subjectBand-to-band recombinationen_US
dc.subjectContinuous layersen_US
dc.subjectCrystalline latticeen_US
dc.subjecthydrothermalen_US
dc.subjectHydrothermal depositionen_US
dc.subjectPhotoluminescence spectrumen_US
dc.subjectRadiative recombination processen_US
dc.subjectVertically aligneden_US
dc.subjectAtomic layer depositionen_US
dc.titleSeed layer assisted hydrothermal deposition of low-resistivity ZnO thin filmsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seed_Layer_Assisted_Hydrothermal_Deposition_of_Low-resistivity_ZnO_Thin_Films.pdf
Size:
524.92 KB
Format:
Adobe Portable Document Format
Description:
Full printable version