Single-material MoS2 thermoelectric junction enabled by substrate engineering

buir.contributor.authorRazeghi, Mohammadali
buir.contributor.authorPehlivanoğlu, Doruk
buir.contributor.authorSheraz, Ali
buir.contributor.authorBaşçı, Uğur
buir.contributor.authorKasırga, Talip Serkan
buir.contributor.orcidPehlivanoğlu, Doruk|0000-0002-1801-5628
buir.contributor.orcidSheraz, Ali|0000-0001-6772-9048
buir.contributor.orcidKasırga, Talip Serkan|0000-0003-3510-5059
dc.citation.epage36-6en_US
dc.citation.issueNumber1
dc.citation.spage36-1
dc.citation.volumeNumber7
dc.contributor.authorRazeghi, Mohammadali
dc.contributor.authorSpiece, J.
dc.contributor.authorOğuz, Oğuzhan
dc.contributor.authorPehlivanoğlu, Doruk
dc.contributor.authorHuang, Y.
dc.contributor.authorSheraz, Ali
dc.contributor.authorBaşçı, U.
dc.contributor.authorDobson, P. S.
dc.contributor.authorWeaver, J. M. R.
dc.contributor.authorGehring, P.
dc.contributor.authorKasırga, Talip Serkan
dc.date.accessioned2024-03-21T17:38:00Z
dc.date.available2024-03-21T17:38:00Z
dc.date.issued2023-05-26
dc.departmentDepartment of Physics
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)
dc.description.abstractTo realize a thermoelectric power generator, typically, a junction between two materials with different Seebeck coefficients needs to be fabricated. Such differences in Seebeck coefficients can be induced by doping, which renders it difficult when working with two-dimensional (2d) materials. However, doping is not the only way to modulate the Seebeck coefficient of a 2d material. Substrate-altered electron–phonon scattering mechanisms can also be used to this end. Here, we employ the substrate effects to form a thermoelectric junction in ultrathin, few-layer MoS2 films. We investigated the junctions with a combination of scanning photocurrent microscopy and scanning thermal microscopy. This allows us to reveal that thermoelectric junctions form across the substrate-engineered parts. We attribute this to a gating effect induced by interfacial charges in combination with alterations in the electron–phonon scattering mechanisms. This work demonstrates that substrate engineering is a promising strategy for developing future compact thin-film thermoelectric power generators. © 2023, The Author(s).
dc.description.provenanceMade available in DSpace on 2024-03-21T17:38:00Z (GMT). No. of bitstreams: 1 Single-material_MoS2_thermoelectric_junction_enabled_by_substrate_engineering.pdf: 3244370 bytes, checksum: 8984824280feefce949425ce23b45a7d (MD5) Previous issue date: 2023-05-26en
dc.identifier.doi10.1038/s41699-023-00406-z
dc.identifier.eissn2397-7132
dc.identifier.urihttps://hdl.handle.net/11693/115057
dc.language.isoen_US
dc.publisherNature Research
dc.relation.isversionofhttps://dx.doi.org/10.1038/s41699-023-00406-z
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titlenpj 2D Materials and Applications
dc.titleSingle-material MoS2 thermoelectric junction enabled by substrate engineering
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Single-material_MoS2_thermoelectric_junction_enabled_by_substrate_engineering.pdf
Size:
3.09 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: