Single-material MoS2 thermoelectric junction enabled by substrate engineering

Series

Abstract

To realize a thermoelectric power generator, typically, a junction between two materials with different Seebeck coefficients needs to be fabricated. Such differences in Seebeck coefficients can be induced by doping, which renders it difficult when working with two-dimensional (2d) materials. However, doping is not the only way to modulate the Seebeck coefficient of a 2d material. Substrate-altered electron–phonon scattering mechanisms can also be used to this end. Here, we employ the substrate effects to form a thermoelectric junction in ultrathin, few-layer MoS2 films. We investigated the junctions with a combination of scanning photocurrent microscopy and scanning thermal microscopy. This allows us to reveal that thermoelectric junctions form across the substrate-engineered parts. We attribute this to a gating effect induced by interfacial charges in combination with alterations in the electron–phonon scattering mechanisms. This work demonstrates that substrate engineering is a promising strategy for developing future compact thin-film thermoelectric power generators. © 2023, The Author(s).

Source Title

npj 2D Materials and Applications

Publisher

Nature Research

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

en_US